Gene pair enrichment analysis (GPEA)
When a network G contains n interactions, of which k interactions are among genes from the given gene set S, then a p-value for the enrichment of gene pairs of this gene set S can be calculated based on a e.g., one-sided Fisher's exact test. For p genes there is a total of N=p(p-1)/2 different gene pairs (clique graph) with the assumption that all genes within a gene set are associated to each other. If there are pS genes for a particular gene set (S) then the total number of gene pairs for this gene set is mS=pS(pS-1)/2.
gpea(gnet, genesets, verbose = TRUE, cmax = 1000, cmin = 3, adj = "bonferroni")
$`Reactome:REACT_115566:Cell Cycle` [1] "APITD1" "TAOK1" "CDC23" [4] "RB1" "PRKCA" "HIST1H4J" [7] "MCM10" "PPP1CC" "NUP153" ...
$`Reactome:REACT_152:Cell Cycle, Mitotic` [1] "APITD1" "TAOK1" "CDKN2C" [4] "RB1" "PRKCA" "MCM10" [7] "HIST1H2BH" "NUP153" "TUBGCP3" [10] "APEX1" "RPA2" "PRKACA" ...
Inference and Analysis of Gene Regulatory Networks in R: Applications in Biology, Medicine, and Chemistry, DOI: 10.1002/9783527694365.ch10 In book: Computational Network Analysis with R, 2016, pp.289-306
Urothelial cancer gene regulatory networks inferred from large-scale RNAseq, Bead and Oligo gene expression data, BMC Syst Biol. 2015; 9: 21.
See Also as enrichment
data(exanet)
data(exgensets) ## example gene sets from the CPDB database (http://www.consensuspathdb.org)
res = gpea(exanet, exgensets, cmax=1000, cmin=2)
Run the code above in your browser using DataLab