expressionQCPipeline(BLData, transFun = logGreenChannelTransform, qcDir = "QC", plotType = ".jpeg", horizontal = TRUE, controlProfile = NULL, overWrite=FALSE,nSegments=9,outlierFun=illuminaOutlierMethod,tagsToDetect = list(housekeeping = "housekeeping", Biotin = "biotin", Hybridisation = "cy3_hyb"),zlim=c(5,7),positiveControlTags = c("housekeeping", "biotin"), hybridisationTags = c("cy3_hyb"), negativeTag= "negative", boxplotFun = logGreenChannelTransform, imageplotFun = logGreenChannelTransform)
beadLevelData
object
This function is a convient way of automatically generating QC plots for each section within a beadLevelData
object. The following plots are produced for each section. i) scatter plots of all bead observation of the positive controls. See poscontPlot
. ii) Further scatter plots of other controls of interest using poscontPlot
. iii) imageplot (imageplot
) of section data after applying transformation function iv) plot of outlier locations using specified outlier function. A HTML page displaying all the plots is produced.
After plots have been produced for each section, makeQCTable
is run to make a table of mean and standard deviations for the defined control types, followed by the results of calculateOutlierStats
and controlProbeDetection
for each section and written to a HTML page in the requested directory.
The function should be able to run automatically for expression data that has its annotation stored using setAnnotation
or using readIllumina
. Otherwise the controlProfile
data frame can be used to define the control types on the array and their associated ArrayAddressIDs. Similarly, the function assumes single-channel data but a transformation function can be passed.
poscontPlot
imageplot
outlierplot
controlProbeDetection
if(require(beadarrayExampleData)){
## Not run:
#
# data(exampleBLData)
#
# expressionQCPipeline(exampleBLData, horizontal=T)
#
# ## End(Not run)
}
Run the code above in your browser using DataLab