Learn R Programming

beadarrayFilter (version 1.1.0)

iccFun: Intra-cluster correlations (ICC) for Illumina bead arrays

Description

Fits the filtering model of Forcheh et al. (2012) and derives the ICC that can be used for filtering. Fitting is done using a modified version of the ``MLM.beadarray" function of Kim and Lin (2011).

Usage

iccFun(eSet, seSet, nSet, ProbeID, iccQuant, diffIcc = TRUE, keepData = TRUE)

Arguments

eSet
The summarized and normalized average intensities
seSet
The standard errors of the average intensities
nSet
The number of beads used for summarization
ProbeID
The bead types idenficiation variable e.g, ProbeID
iccQuant
It refers to the number summary described in Forcheh et al. (2012). It can be a vector of quantiles or a single value (scalar). For example, iccQuant = c(0, 0.25 ,0.5, 0.75, 1) means that summarization of the ICCs be done at the minimum ICC, 0.25, 0.5
diffIcc
If TRUE, then iccQuant must be a vector, if FALSE, iccQuant must be a single value. The default is TRUE.
keepData
If TRUE, then, the ICC at the number summary, the within array variances, the between array variances as well as all the ICCs will be returned. If FALSE, only the ICCs at the number summary will be returned.

Value

  • iccThe summarized ICCs at the number summary
  • withinvarThe within array variances
  • betweenvarThe between array variances
  • iccAllAll the ICCs, i.e., one ICC per bead type per array

Details

Bead filtering aims at removing non-informative bead types prior to the downstream analysis. This function takes as input the summarized and normalized average intensities (eSet), their standard errors (seSet) and the number of beads used for summarization (nSet). It fits the filtering model of Forcheh et al. (2012) and derives the ICCs. The obtained ICC can then be used for filtering bead types or to assess the filtering strategies. See examples for more on this.

References

Dunning, M.J., Smith, M.L., Ritchie, M.E., Tavare, S. (2007). beadarray: R classes and methods for Illumina bead-based data, Bioinformatics. 23(16):2183-2184. Dunning, M.J. (2011). beadarrayExampleData: Example data for the beadarray package. R package version 1.0.4. Forcheh, A.C, Verbeke, G., Kasim, A., Lin, D., Shkedy, Z., Talloen, W., Gohlmann, H.W.H, Clement, L. (2012). Gene Filtering in the Analysis of Illumina Microarray Experiments, Statistical Applications in Genetics and Molecular Biology, Berkeley Electronic Press, vol. 11(2), Article 3. Kim, R.S. and Lin, J. (2011). Multi-level mixed effects models for bead arrays. Bioinformatics, 27(5):633-640.

Examples

Run this code
require(beadarrayExampleData)
data(exampleSummaryData)
exampleSummaryDatalog2 <- channel(exampleSummaryData, "G")[1:40,]
exampleSummaryDataNorm <- normaliseIllumina(exampleSummaryDatalog2, 
method = "quantile", transform = "none")[1:40,]
aaa<-na.omit(data.frame(I(rownames(exprs(exampleSummaryDataNorm))),exprs(exampleSummaryDataNorm)))[1:40,]
ProbeID <- aaa[,1][1:40]
    eSet <- na.omit(exprs(exampleSummaryDataNorm))[1:40,]
    stddev <- na.omit(se.exprs(exampleSummaryDataNorm))[1:40,]
    nSet <- na.omit(attributes(exampleSummaryDataNorm)$assayData$nObservations)[1:40,]
    seSet<-stddev/sqrt(nSet)
    iccResults<-iccFun(eSet,seSet,nSet,ProbeID =ProbeID ,iccQuant=1,
    diffIcc=FALSE,keepData=TRUE)    informProbeNames<- subset(iccResults$icc, iccResults$icc[,2]>=0.5)[,1]
filterDataNorm<-exampleSummaryDataNorm[informProbeNames,]

Run the code above in your browser using DataLab