Learn R Programming

beanz (version 3.1)

bzComp: Comparison of posterior treatment effects

Description

Present the difference in the posterior treatment effects between subgroups

Usage

bzSummaryComp(stan.rst, sel.grps = NULL, cut = 0, digits = 3, seed = NULL)

bzPlotComp(stan.rst, sel.grps = NULL, ..., seed = NULL)

bzForestComp( stan.rst, sel.grps = NULL, ..., quants = c(0.025, 0.975), seed = NULL )

Value

bzSummaryComp generates a data frame with summary statistics of the difference of treatment effects between the selected subgroups.

bzPlotComp generates the density plot of the difference in the posterior treatment effects between subgroups. bzForestComp

generates the forest plot of the difference in the posterior treatment effects between subgroups.

Arguments

stan.rst

a class beanz.stan object generated by bzCallStan

sel.grps

an array of subgroup numbers to be included in the summary results

cut

cut point to compute the probabiliby that the posterior subgroup treatment effects is below

digits

number of digits in the summary result table

seed

random seed

...

options for plot function

quants

lower and upper quantiles of the credible intervals in the forest plot

See Also

bzCallStan

Examples

Run this code
if (FALSE) {
var.cov    <- c("sodium", "lvef", "any.vasodilator.use");
var.resp   <- "y";
var.trt    <- "trt";
var.censor <- "censor";
resptype   <- "survival";
var.estvar <- c("Estimate", "Variance");

subgrp.effect <- bzGetSubgrpRaw(solvd.sub,
                             var.resp   = var.resp,
                             var.trt    = var.trt,
                             var.cov    = var.cov,
                             var.censor = var.censor,
                             resptype   = resptype);

rst.sr     <- bzCallStan("sr", dat.sub=subgrp.effect,
                         var.estvar=var.estvar, var.cov = var.cov,
                         par.pri=c(B=1000, C=1000),
                         chains=4, iter=500,
                         warmup=100, thin=2, seed=1000);

sel.grps <- c(1,4,5);
tbl.sub <- bzSummaryComp(rst.sr, sel.grps=sel.grps);
bzPlot(rst.sr, sel.grps = sel.grps);
bzForest(rst.sr, sel.grps = sel.grps);}

Run the code above in your browser using DataLab