Learn R Programming

beaver (version 1.0.0)

model_negbin_linear: Negative Binomial Linear Dose Response

Description

Model settings for a negative binomial distribution assuming an linear model on the mean. This function is to be used within a call to beaver_mcmc().

Usage

model_negbin_linear(mu_b1, sigma_b1, mu_b2, sigma_b2, w_prior = 1)

Value

A list with the model's prior weight and hyperparameter values.

Arguments

mu_b1, sigma_b1, mu_b2, sigma_b2

hyperparameters. See the model description below for context.

w_prior

the prior weight for the model.

Negative Binomial Linear

Let \(y_{ij}\) be the \(j\)th subject on dose \(d_i\). The model is $$y_{ij} ~ NB(p_i, r_i)$$ $$p_i ~ Uniform(0, 1)$$ $$r_{ij} = (\mu_{ij} * p_i) / (1 - p_i)$$ $$log(\mu_{ij}) = x_{ij} * b1 + b2 * d_i$$ $$b1 ~ N(`mu_b1`, `sigma_b1`^2)$$ $$b2 ~ N(`mu_b2`, `sigma_b2`^2)$$ The model is parameterized in terms of the mean of the negative binomial distribution and the usual probability parameter p. The prior on the mean is a linear model, and the prior on p at each dose is Uniform(0, 1). The model can adjust for baseline covariates, ($$x_{ij}$$).

See Also

Other models: beaver_mcmc(), model_negbin_emax(), model_negbin_exp(), model_negbin_indep(), model_negbin_loglinear(), model_negbin_logquad(), model_negbin_quad(), model_negbin_sigmoid_emax()