Learn R Programming

System benchmarking

R benchmarking made easy. The package contains a number of benchmarks, heavily based on the benchmarks at https://mac.R-project.org/benchmarks/R-benchmark-25.R, for assessing the speed of your system.

The package is for R 3.5 and above. In previous versions R, detecting the effect of the byte compiler was tricky and produced unrealistic comparisons.

Overview

A straightforward way of speeding up your analysis is to buy a better computer. Modern desktops are relatively cheap, especially compared to user time. However, it isn’t clear if upgrading your computing is worth the cost. The benchmarkme package provides a set of benchmarks to help quantify your system. More importantly, it allows you to compare your timings with other systems.

Overview

The package is on CRAN and can be installed in the usual way

install.packages("benchmarkme")

There are two groups of benchmarks:

  • benchmark_std(): this benchmarks numerical operations such as loops and matrix operations. The benchmark comprises of three separate benchmarks: prog, matrix_fun, and matrix_cal.
  • benchmark_io(): this benchmarks reading and writing a 5 / 50, MB csv file.

The benchmark_std() function

This benchmarks numerical operations such as loops and matrix operations. This benchmark comprises of three separate benchmarks: prog, matrix_fun, and matrix_cal. If you have less than 3GB of RAM (run get_ram() to find out how much is available on your system), then you should kill any memory hungry applications, e.g. firefox, and set runs = 1 as an argument.

To benchmark your system, use

library("benchmarkme")
## Increase runs if you have a higher spec machine
res = benchmark_std(runs = 3)

and upload your results

## You can control exactly what is uploaded. See details below.
upload_results(res)

You can compare your results to other users via

plot(res)

The benchmark_io() function

This function benchmarks reading and writing a 5MB or 50MB (if you have less than 4GB of RAM, reduce the number of runs to 1). Run the benchmark using

res_io = benchmark_io(runs = 3)
upload_results(res_io)
plot(res_io)

By default the files are written to a temporary directory generated

tempdir()

which depends on the value of

Sys.getenv("TMPDIR")

You can alter this to via the tmpdir argument. This is useful for comparing hard drive access to a network drive.

res_io = benchmark_io(tmpdir = "some_other_directory")

Parallel benchmarks

The benchmark functions above have a parallel option - just simply specify the number of cores you want to test. For example to test using four cores

res_io = benchmark_std(runs = 3, cores = 4)
plot(res_io)

Previous versions of the package

This package was started around 2015. However, multiple changes in the byte compiler over the last few years, has made it very difficult to use previous results. So we have to start from scratch.

The previous data can be obtained via

data(past_results, package = "benchmarkmeData")

Machine specs

The package has a few useful functions for extracting system specs:

  • RAM: get_ram()
  • CPUs: get_cpu()
  • BLAS library: get_linear_algebra()
  • Is byte compiling enabled: get_byte_compiler()
  • General platform info: get_platform_info()
  • R version: get_r_version()

The above functions have been tested on a number of systems. If they don’t work on your system, please raise GitHub issue.

Uploaded data sets

A summary of the uploaded data sets is available in the benchmarkmeData package

data(past_results_v2, package = "benchmarkmeData")

A column of this data set, contains the unique identifier returned by the upload_results() function.

What’s uploaded

Two objects are uploaded:

  1. Your benchmarks from benchmark_std or benchmark_io;
  2. A summary of your system information (get_sys_details()).

The get_sys_details() returns:

  • Sys.info();
  • get_platform_info();
  • get_r_version();
  • get_ram();
  • get_cpu();
  • get_byte_compiler();
  • get_linear_algebra();
  • installed.packages();
  • Sys.getlocale();
  • The benchmarkme version number;
  • Unique ID - used to extract results;
  • The current date.

The function Sys.info() does include the user and nodenames. In the public release of the data, this information will be removed. If you don’t wish to upload certain information, just set the corresponding argument, i.e.

upload_results(res, args = list(sys_info = FALSE))

Development of this package was supported by Jumping Rivers

Copy Link

Version

Install

install.packages('benchmarkme')

Monthly Downloads

2,026

Version

1.0.8

License

GPL-2 | GPL-3

Issues

Pull Requests

Stars

Forks

Maintainer

Last Published

June 12th, 2022

Functions in benchmarkme (1.0.8)

get_byte_compiler

Byte compiler status
get_cpu

CPU Description
rank_results

Benchmark rankings
reexports

Objects exported from other packages
get_linear_algebra

Get BLAS and LAPACK libraries Extract the the blas/lapack from sessionInfo()
get_platform_info

Platform information
bm_matrix_fun_fft

Matrix function benchmarks
benchmark_io

IO benchmarks
benchmark_std

Run standard benchmarks
benchmarkme-package

The benchmarkme package
bm_matrix_cal_manip

Matrix calculation benchmarks
bm_parallel

Benchmark in parallel
plot.ben_results

Compare results to past tests
get_sys_details

General system information
get_ram

Get the amount of RAM
get_r_version

R version
bm_prog_fib

Programming benchmarks
sample_results

Sample benchmarking results
get_available_benchmarks

Available benchmarks
create_bundle

Upload benchmark results