exDat <- rnorm(30,sd=5)
quantile(exDat, probs=c(0.9, 0.99), type=1)
quantile(exDat, probs=c(0.9, 0.99), type=2)
round( sapply(1:9, function(m) quantile(exDat, probs=0.9, type=m)) , 3)
# and now the unweighted average:
quantileMean(exDat, probs=c(0.9, 0.99))
quantileMean(exDat, probs=0.9)
# say I trust type 2 and 3 especially and want to add a touch of 7:
quantileMean(exDat, probs=c(0.9, 0.99), weights=c(1,5,5,0,1,1,3,1,1))
# quantile sample size dependency simulation:
qbeta(p=0.999, 2, 9) # dist with Q99.9% = 0.62
betaPlot(2, 9, cumulative=FALSE, keeppar=TRUE)
abline(v=qbeta(p=0.999, 2, 9), col=6, lwd=3)
qm <- function(size) quantileMean(rbeta(size, 2,9), probs=0.999, names=FALSE)
n30 <- replicate(n=500, expr=qm(30))
n1000 <- replicate(n=500, expr=qm(1000))
lines(density(n30))
lines(density(n1000), col=3)
# with small sample size, high quantiles are systematically
# underestimated. for Q0.999, n must be > 1000
if (FALSE) {
# #Excluded from CRAN Checks because of the long computing time
# Parametrical quantiles can avoid sample size dependency!
library2("extremeStat")
library2("pbapply")
dlq <- distLquantile(rbeta(1000, 2,9), probs=0.999, list=TRUE, gpd=FALSE)
plotLquantile(dlq, nbest=10) # 10 distribution functions
select <- c("wei","wak","pe3","gno","gev","gum","gpa","gam")
# median of 10 simulations:
nsim <- 10 # set higher for less noisy image (but more computing time)
qmm <- function(size, truncate=0) median(replicate(n=nsim,
expr=quantileMean(rbeta(size, 2,9), probs=0.999, names=FALSE,
truncate=truncate) ))
pqmm <- function(size, truncate=0) median(replicate(n=nsim,
expr=mean(distLquantile(rbeta(size, 2,9), probs=0.999, selection=select,
progbars=FALSE, time=FALSE, truncate=truncate, gpd=FALSE,
weighted=FALSE, empirical=FALSE, ssquiet=TRUE)[1:8, 1]) ))
n <- round( logSpaced(min=10, max=1000, n=15, base=1.4, plot=FALSE) )
medians_emp <- pbsapply(n, qmm) # medians of regular quantile average
# with truncation, only top 20% used for quantile estimation (censored quant):
medians_emp_trunc <- sapply(n, qmm, truncate=0.8)
# medians of parametrical quantile estimation
medians_param <- pbsapply(n, pqmm) # takes ~60 secs
medians_param_trunc <- pbsapply(n, pqmm, truncate=0.8)
plot(n, medians_emp, type="l", ylim=c(0.45, 0.7), las=1)
abline(h=qbeta(p=0.999, 2, 9), col=6) # real value
lines(n, medians_emp_trunc, col=2) # don't help!
# In small samples, rare high values, on average, simply do not occur
lines(n, medians_param, col=4) # overestimated, but not dependent on n
# with truncation, only top 20% used for quantile estimation
lines(n, medians_param_trunc, col="orange", lwd=3) # much better!
}
Run the code above in your browser using DataLab