Resamples the 3 abundance-based multiple-site dissimilarities (balanced variation fraction,abundance-gradient fraction, and overall dissimilarity) for a subset of sites of the original data frame.
beta.sample.abund(x, index.family="bray", sites = nrow(x), samples = 1)
The function returns a list with a dataframe with the resampled 3 multiple-site dissimilarities
(balanced variation fraction, abundance-gradient fraction and overall dissimilarity; see beta.multi.abund
),
a vector with the respective means and a vector with the respective standard deviation.
For index.family="bray"
:
dataframe containing beta.BRAY.BAL, beta.BRAY.GRA and beta.BRAY for all samples
vector containing the mean values of beta.BRAY.BAL, beta.BRAY.GRA and beta.BRAY among samples
vector containing the sd values of beta.BRAY.BAL, beta.BRAY.GRA and beta.BRAY among samples
For index.family="ruzicka"
:
dataframe containing beta.RUZ.BAL, beta.RUZ.GRA and beta.RUZ for all samples
vector containing the mean values of beta.RUZ.BAL, beta.RUZ.GRA and beta.RUZ among samples
vector containing the sd values of beta.RUZ.BAL, beta.RUZ.GRA and beta.RUZ among samples
data frame, where rows are sites and columns are species
family of dissimilarity indices, partial match of "bray"
or "ruzicka"
.
number of sites for which multiple-site dissimilarities will be computed. If not specified, default is all sites.
number of repetitions. If not specified, default is 1.
Andrés Baselga
Baselga, A. 2017. Partitioning abundance-based multiple-site dissimilarity into components: balanced variation in abundance and abundance gradients. Methods in Ecology and Evolution 8: 799-808
beta.multi.abund
, beta.sample
require(vegan)
data(BCI)
beta.sample.abund(BCI, index.family="bray", sites=10, samples=100)
Run the code above in your browser using DataLab