# \dontshow{
test <- matrix(rnorm(5000),100,50)
roweff <- sample(1:5,10,replace=TRUE)
coleff <- sample(1:5,10,replace=TRUE)
test[11:20,11:20] <- test[11:20,11:20] +
matrix(coleff,nrow=10,ncol=10,byrow=TRUE) +
matrix(roweff,nrow=10,ncol=10) +
roweff %*% t(coleff)
#Apply Plaid Biclustering
res <- biclust(test, method=BCPlaid())
#Apply default diagnosticTest
out <- diagnosticTest(BCresult=res, data=test, save_F=TRUE, number=1,
statistics=c("F"),
samplingtypes=c("Permutation"))
diagnosticPlot2(out,number=1)
# }
if (FALSE) {
#Random matrix with embedded bicluster (with multiplicative effect)
test <- matrix(rnorm(5000),100,50)
roweff <- sample(1:5,10,replace=TRUE)
coleff <- sample(1:5,10,replace=TRUE)
test[11:20,11:20] <- test[11:20,11:20] +
matrix(coleff,nrow=10,ncol=10,byrow=TRUE) +
matrix(roweff,nrow=10,ncol=10) +
roweff %*% t(coleff)
#Apply Plaid Biclustering
res <- biclust(test, method=BCPlaid())
#Apply default diagnosticTest
out <- diagnosticTest(BCresult=res, data=test, save_F=TRUE, number=1,
statistics=c("F","Tukey","ModTukey","Tusell","Mandel","LBI","JandG"),
samplingtypes=c("Permutation","SemiparPerm","SemiparBoot",
"PermutationCor","SamplingCor","NormSim"))
#Plot Distributions
diagnosticPlot2(out,number=1)
}
Run the code above in your browser using DataLab