if (FALSE) {
if(require(fields)) {
SN2011fe <- SN2011fe_subset
SN2011fe_newdata <- SN2011fe_newdata_subset
SN2011fe_mle <- SN2011fe_mle_subset
nProc <- 3
n <- nrow(SN2011fe)
m <- nrow(SN2011fe_newdata)
nu <- 2
inputs <- c(as.list(SN2011fe), as.list(SN2011fe_newdata), nu = nu)
prob <- krigeProblem$new("prob", numProcesses = nProc, n = n, m = m,
predMeanFunction = SN2011fe_predmeanfunc, crossCovFunction =
SN2011fe_crosscovfunc, predCovFunction = SN2011fe_predcovfunc,
meanFunction = SN2011fe_meanfunc, covFunction = SN2011fe_covfunc,
inputs = inputs, params = SN2011fe_mle$par, data = SN2011fe$flux,
packages = c("fields"))
remoteCalcChol(matName = "C", cholName = "L", matPos = "prob",
cholPos = "prob", n = n, h = prob$h_n)
prob$remoteConstructCov(obs = FALSE, pred = FALSE, cross = TRUE, verbose = TRUE)
# we now have a rectangular cross-covariance matrix named 'crossC'
remoteForwardsolve(cholName = "L", inputName = "crossC", outputName = "tmp1",
cholPos = "prob", inputPos = "prob", n1 = n, n2 = m, h1 = prob$h_n, h2 = prob$h_m)
remoteCrossProdMatSelf(inputName = "tmp1", outputName = "result", n1 = n,
n2 = m, h1 = prob$h_n, h2 = prob$h_m)
result <- collectTriangularMatrix("result", n = m, h = prob$h_m)
remoteCrossProdMatSelfDiag(inputName = "tmp1", outputName = "resultDiag",
n1 = n, n2 = m, h1 = prob$h_n, h2 = prob$h_m)
resultDiag <- collectVector("resultDiag", n = m, h = prob$h_m)
}
}
Run the code above in your browser using DataLab