Learn R Programming

bigml (version 0.1.2)

quickModel: Quickly Creating BigML Models

Description

Quickly Creating BigML Models

Usage

quickModel(data, input_fields = names(data), objective_fields = tail(names(data), n = 1), name = paste(deparse(substitute(data)), "'s model", sep = ""), range = NULL, ...)

Arguments

data
A matrix or data frame containing data to upload to bigml.
input_fields
A vector of string names to use for training.
objective_fields
A single string value to use as an objective field (objective_fields is plural for future use).
name
A string giving the name of the model.
range
A two element numeric vector that defines a range over the dataset in which to train on.
...
Arbitrary named arguments that are passed on to formEncodeURL in order to create form-encoded URL options.

Value

category
numeric
code
numeric
columns
numeric
created
character
credits
numeric
dataset
character
dataset_status
logical
description
character
input_fields
character
locale
character
max_columns
numeric
max_rows
numeric
model
list
name
character
number_of_predictions
numeric
objective_fields
character
private
logical
range
numeric
resource
character
rows
numeric
size
numeric
source
character
source_status
logical
status
list
tags
AsIs
updated
character

Details

quickModel will take its "data" dataframe argument and attempt to create a dataset using quickDataset. It is possible to specify the input_fields and objective_fields using the simple names from the data argument.

References

https://bigml.com/developers/models

See Also

Other model methods: createModel; getModel; listModels

Other quick methods: quickDataset; quickPrediction; quickSource