Learn R Programming

bigrquery (version 1.4.2)

bq_refs: S3 classes that reference remote BigQuery datasets, tables and jobs

Description

Create references to BigQuery datasets, jobs, and tables. Each class has a constructor function (bq_dataset(), bq_table(), bq_job()) and a coercion function (as_bq_dataset(), as_bq_table(), as_bq_job()). The coercions functions come with methods for strings (which find components by splitting on .), and lists (which look for named components like projectId or project_id).

All bq_table_, bq_dataset_ and bq_job_ functions call the appropriate coercion functions on their first argument, allowing you to flexible specify their inputs.

Usage

bq_dataset(project, dataset)

as_bq_dataset(x)

bq_table(project, dataset, table = NULL)

as_bq_table(x, ...)

bq_job(project, job, location = "US")

as_bq_job(x)

Arguments

project, dataset, table, job

Individual project, dataset, table, and job identifiers (strings).

For bq_table(), you if supply a bq_dataset as the first argument, the 2nd argument will be interpreted as the table

x

An object to coerce to a bq_job, bq_dataset, or bq_table. Built-in methods handle strings and lists.

...

Other arguments passed on to methods.

location

Job location

See Also

api-job, api-perform, api-dataset, and api-table for functions that work with these objects.

Examples

Run this code
# Creation ------------------------------------------------
samples <- bq_dataset("publicdata", "samples")
natality <- bq_table("publicdata", "samples", "natality")
natality

# Or
bq_table(samples, "natality")

bq_job("bigrquery-examples", "m0SgFu2ycbbge6jgcvzvflBJ_Wft")

# Coercion ------------------------------------------------
as_bq_dataset("publicdata.shakespeare")
as_bq_table("publicdata.samples.natality")

as_bq_table(list(
  project_id = "publicdata",
  dataset_id = "samples",
  table_id = "natality"
))

as_bq_job(list(
  projectId = "bigrquery-examples",
  jobId = "job_m0SgFu2ycbbge6jgcvzvflBJ_Wft",
  location = "US"
))

Run the code above in your browser using DataLab