LDpred2. Tutorial at https://privefl.github.io/bigsnpr/articles/LDpred2.html.
snp_ldpred2_inf(corr, df_beta, h2)snp_ldpred2_grid(
corr,
df_beta,
grid_param,
burn_in = 50,
num_iter = 100,
ncores = 1,
return_sampling_betas = FALSE
)
snp_ldpred2_auto(
corr,
df_beta,
h2_init,
vec_p_init = 0.1,
burn_in = 1000,
num_iter = 500,
sparse = FALSE,
verbose = FALSE,
ncores = 1
)
Sparse correlation matrix as an SFBM.
If corr
is a dsCMatrix or a dgCMatrix, you can use as_SFBM(corr)
.
A data frame with 3 columns:
$beta
: effect size estimates
$beta_se
: standard errors of effect size estimates
$n_eff
: sample size when estimating beta
(in the case of binary traits, this is 4 / (1 / n_control + 1 / n_case)
)
Heritability estimate.
A data frame with 3 columns as a grid of hyper-parameters:
$p
: proportion of causal variants
$h2
: heritability (captured by the variants used)
$sparse
: boolean, whether a sparse model is sought
They can be run in parallel by changing ncores
.
Number of burn-in iterations.
Number of iterations after burn-in.
Number of cores used. Default doesn't use parallelism. You may use nb_cores.
Whether to return all sampling betas (after
burn-in)? This is useful for assessing the uncertainty of the PRS at the
individual level (see 10.1101/2020.11.30.403188).
Default is FALSE
(only returns the averaged final vectors of betas).
If TRUE
, only one set of parameters is allowed.
Heritability estimate for initialization.
Vector of initial values for p. Default is 0.1
.
In LDpred2-auto, whether to also report a sparse solution by
running LDpred2-grid with the estimates of p and h2 from LDpred2-auto, and
sparsity enabled. Default is FALSE
.
Whether to print "p // h2" estimates at each iteration.
snp_ldpred2_inf
: A vector of effects, assuming an infinitesimal model.
snp_ldpred2_grid
: A matrix of effect sizes, one vector (column)
for each row of grid_param
. If using return_sampling_betas
, each
column corresponds to one iteration instead (after burn-in).
snp_ldpred2_auto
: A list (over vec_p_init
) of lists with
$beta_est
: vector of effect sizes
$beta_est_sparse
(only when sparse = TRUE
): sparse vector of effect sizes
$postp_est
: vector of posterior probabilities of being causal
$p_est
: estimate of p, the proportion of causal variants
$h2_est
: estimate of the (SNP) heritability (also see coef_to_liab)
$path_p_est
: full path of p estimates (including burn-in);
useful to check convergence of the iterative algorithm
$path_h2_est
: full path of h2 estimates (including burn-in);
useful to check convergence of the iterative algorithm
$h2_init
and $p_init