
Procrustes transform Y = pXR (after centering), where p is a scaling coefficient and R is a rotation matrix that minimize ||Y - pXR||_F.
procrustes(Y, X, n_iter_max = 1000, epsilon_min = 1e-07)
Reference matrix.
Matrix to transform (ncol(X) >= ncol(Y)
).
Maximum number of iterations. Default is 1000
.
Convergence criterion. Default is 1e-7
.
Object of class "procrustes", a list with the following elements:
$R
: the rotation matrix to apply to X
,
$rho
: the scaling coefficient to apply to X
,
$c
: the column centering to apply to the resulting matrix,
$diff
: the average difference between Y
and X
transformed.
You can use method predict()
to apply this transformation to other data.
# NOT RUN {
A <- matrix(rnorm(200), ncol = 20)
B <- matrix(rnorm(length(A)), nrow = nrow(A))
proc <- procrustes(B, A)
str(proc)
plot(B, predict(proc, A)); abline(0, 1, col = "red")
# }
Run the code above in your browser using DataLab