## Lifted from example(predict.glm):
ldose <- rep(0:5, 2)
numdead <- c(1, 4, 9, 13, 18, 20, 0, 2, 6, 10, 12, 16)
sex <- factor(rep(c("M", "F"), c(6, 6)))
SF <- cbind(numdead, numalive=20-numdead)
## budworm.lg <- glm(SF ~ sex*ldose, family=binomial)
## summary(budworm.lg)
dat <- data.frame(SF=SF, sex, ldose)
dat[10, 1:2] <- rep(5, 2)
dat[13, ] <- dat[10, ]
rm(SF, sex, ldose)
SF <- as.matrix(dat[,1:2])
dat <- dat[,-(1:2)]
dat <- as.data.frame(cbind(SF, dat))
summary(m0 <- glm(SF ~ sex*ldose, binomial, dat))
## Various types of grouping:
(ind <- c(1:12, 10))
g <- group(m0, ind=ind, eval=TRUE)
g <- group(m0, eval=FALSE)
g <- group(m0, eval=TRUE)
## The correct GOF-test from the residual deviance is given by:
g$newObject
Run the code above in your browser using DataLab