Learn R Programming

bio3d (version 2.1-2)

entropy: Shannon Entropy Score

Description

Calculate the sequence entropy score for every position in an alignment.

Usage

entropy(alignment)

Arguments

alignment
sequence alignment returned from read.fasta or an alignment character matrix.

Value

  • Returns a list with five components:
  • Hstandard entropy score for a 22-letter alphabet.
  • H.10entropy score for a 10-letter alphabet (see below).
  • H.normnormalized entropy score (for 22-letter alphabet), so that conserved (low entropy) columns (or positions) score 1, and diverse (high entropy) columns score 0.
  • H.10.normnormalized entropy score (for 10-letter alphabet), so that conserved (low entropy) columns score 1 and diverse (high entropy) columns score 0.
  • freqresidue frequency matrix containing percent occurrence values for each residue type.

Details

Shannon's information theoretic entropy (Shannon, 1948) is an often-used measure of residue diversity and hence residue conservation.

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695--2696.

Shannon (1948) The System Technical J. 27, 379--422. Mirny and Shakhnovich (1999) J. Mol. Biol. 291, 177--196.

See Also

consensus, read.fasta

Examples

Run this code
# Read HIV protease alignment 
aln <- read.fasta(system.file("examples/hivp_xray.fa",package="bio3d"))

# Entropy and consensus
h   <- entropy(aln)
con <- consensus(aln)

names(h$H)=con$seq
print(h$H)

# Entropy for sub-alignment (positions 1 to 20) 
h.sub <- entropy(aln$ali[,1:20])

# Plot entropy and residue frequencies (excluding positions >=60 percent gaps)
H <- h$H.norm
H[ apply(h$freq[21:22,],2,sum)>=0.6 ] = 0

col <- mono.colors(32)
aa  <- rev(rownames(h$freq))
oldpar <- par(no.readonly=TRUE)
layout(matrix(c(1,2),2,1,byrow = TRUE), widths = 7, 
       heights = c(2, 8), respect = FALSE)

# Plot 1: entropy
par(mar = c(0, 4, 2, 2))
barplot(H, border="white", ylab = "Entropy",
        space=0, xlim=c(3.7, 97.3),yaxt="n" )
axis(side=2, at=c(0.2,0.4, 0.6, 0.8))
axis(side=3, at=(seq(0,length(con$seq),by=5)-0.5),
     labels=seq(0,length(con$seq),by=5))
box()

# Plot2: residue frequencies 
par(mar = c(5, 4, 0, 2))
image(x=1:ncol(con$freq),
      y=1:nrow(con$freq),
      z=as.matrix(rev(as.data.frame(t(con$freq)))),
      col=col, yaxt="n", xaxt="n",
      xlab="Alignment Position", ylab="Residue Type")
axis(side=1, at=seq(0,length(con$seq),by=5))
axis(side=2, at=c(1:22), labels=aa)
axis(side=3, at=c(1:length(con$seq)), labels =con$seq)
axis(side=4, at=c(1:22), labels=aa)
grid(length(con$seq), length(aa))
box()

for(i in 1:length(con$seq)) {
  text(i, which(aa==con$seq[i]),con$seq[i],col="white")
}
abline(h=c(3.5, 4.5, 5.5, 3.5, 7.5, 9.5,
         12.5, 14.5, 16.5, 19.5), col="gray")

par(oldpar)

Run the code above in your browser using DataLab