## Not run:
#
# # Example of transducin
# attach(transducin)
#
# gaps.pos <- gap.inspect(pdbs$xyz)
# modes <- nma.pdbs(pdbs, full=TRUE)
# dccms <- dccm.enma(modes)
#
# cij <- filter.dccm(dccms, xyz=pdbs)
#
# # Example protein kinase
# # Select Protein Kinase PDB IDs
# ids <- c("4b7t_A", "2exm_A", "1opj_A", "4jaj_A", "1a9u_A",
# "1tki_A", "1csn_A", "1lp4_A")
#
# # Download and split by chain ID
# files <- get.pdb(ids, path = "raw_pdbs", split=TRUE)
#
# # Alignment of structures
# pdbs <- pdbaln(files) # Sequence identity
# summary(c(seqidentity(pdbs)))
#
# # NMA on all structures
# modes <- nma.pdbs(pdbs, full = TRUE)
#
# # Calculate correlation matrices for each structure
# cij <- dccm(modes)
#
# # Set DCCM plot panel names for combined figure
# dimnames(cij$all.dccm) = list(NULL, NULL, ids)
# plot.dccm(cij$all.dccm)
#
# # Filter to display only correlations present in all structures
# cij.all <- filter.dccm(cij, cutoff.sims = 8, cutoff.cij = 0)
# plot.dccm(cij.all, main = "Consensus Residue Cross Correlation")
#
# detach(transducin)
# ## End(Not run)
Run the code above in your browser using DataLab