Learn R Programming

bio3d (version 2.2-4)

pca.tor: Principal Component Analysis

Description

Performs principal components analysis (PCA) on torsion angle data.

Usage

"pca"(data, ...)

Arguments

data
numeric matrix of torsion angles with a row per structure.
...
additional arguments passed to the method pca.xyz.

Value

Returns a list with the following components:
L
eigenvalues.
U
eigenvectors (i.e. the variable loadings).
z.u
scores of the supplied data on the pcs.
sdev
the standard deviations of the pcs.
mean
the means that were subtracted.

References

Grant, B.J. et al. (2006) Bioinformatics 22, 2695--2696.

See Also

torsion.xyz, plot.pca, plot.pca.loadings, pca.xyz

Examples

Run this code
##-- PCA on torsion data for multiple PDBs 
data(kinesin)
attach(kinesin, warn.conflicts=FALSE)

gaps.pos <- gap.inspect(pdbs$xyz)
tor <- t(apply( pdbs$xyz[, gaps.pos$f.inds], 1, torsion.xyz, atm.inc=1))
pc.tor <- pca.tor(tor[,-c(1,218,219,220)])
#plot(pc.tor)
plot.pca.loadings(pc.tor)

detach(kinesin)

## Not run: 
# ##-- PCA on torsion data from an MD trajectory
# trj <- read.dcd( system.file("examples/hivp.dcd", package="bio3d") )
# tor <- t(apply(trj, 1, torsion.xyz, atm.inc=1))
# gaps <- gap.inspect(tor)
# pc.tor <- pca.tor(tor[,gaps$f.inds])
# plot.pca.loadings(pc.tor)
# ## End(Not run)

Run the code above in your browser using DataLab