# NOT RUN {
# }
# NOT RUN {
# Example of transducin
attach(transducin)
gaps.pos <- gap.inspect(pdbs$xyz)
modes <- nma.pdbs(pdbs, ncore=NULL)
dccms <- dccm.enma(modes, ncore=NULL)
cij <- filter.dccm(dccms, xyz=pdbs)
# Example protein kinase
# Select Protein Kinase PDB IDs
ids <- c("4b7t_A", "2exm_A", "1opj_A", "4jaj_A", "1a9u_A",
"1tki_A", "1csn_A", "1lp4_A")
# Download and split by chain ID
files <- get.pdb(ids, path = "raw_pdbs", split=TRUE)
# Alignment of structures
pdbs <- pdbaln(files) # Sequence identity
summary(c(seqidentity(pdbs)))
# NMA on all structures
modes <- nma.pdbs(pdbs, ncore=NULL)
# Calculate correlation matrices for each structure
cij <- dccm(modes)
# Set DCCM plot panel names for combined figure
dimnames(cij$all.dccm) = list(NULL, NULL, ids)
plot.dccm(cij$all.dccm)
# Filter to display only correlations present in all structures
cij.all <- filter.dccm(cij, cutoff.sims = 8, cutoff.cij = 0)
plot.dccm(cij.all, main = "Consensus Residue Cross Correlation")
detach(transducin)
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab