# NOT RUN {
# 0. Load data & Selecting Data
# species occurrences
DataSpecies <- read.csv(system.file("external/species/mammals_table.csv",
package="biomod2"), row.names = 1)
head(DataSpecies)
# the name of studied species
myRespName <- 'GuloGulo'
# the presence/absences data for our species
myResp <- as.numeric(DataSpecies[,myRespName])
# the XY coordinates of species data
myRespXY <- DataSpecies[,c("X_WGS84","Y_WGS84")]
# Environmental variables extracted from BIOCLIM (bio_3, bio_4, bio_7, bio_11 & bio_12)
myExpl = stack( system.file( "external/bioclim/current/bio3.grd",
package="biomod2"),
system.file( "external/bioclim/current/bio4.grd",
package="biomod2"),
system.file( "external/bioclim/current/bio7.grd",
package="biomod2"),
system.file( "external/bioclim/current/bio11.grd",
package="biomod2"),
system.file( "external/bioclim/current/bio12.grd",
package="biomod2"))
# 1. Formatting Data
myBiomodData <- BIOMOD_FormatingData(resp.var = myResp,
expl.var = myExpl,
resp.xy = myRespXY,
resp.name = myRespName)
# 2. Defining Models Options using default options.
myBiomodOption <- BIOMOD_ModelingOptions()
# 3. Running the models
myBiomodModelOut <- BIOMOD_Modeling( myBiomodData,
models = c('RF'),
models.options = myBiomodOption,
NbRunEval=2,
DataSplit=60,
Yweights=NULL,
VarImport=0,
models.eval.meth = c('TSS'),
SaveObj = TRUE,
rescal.all.models = FALSE,
do.full.models = FALSE)
# 4. Creating the ensemble models
myBiomodEM <- BIOMOD_EnsembleModeling(
modeling.output = myBiomodModelOut,
chosen.models = grep('_RF', get_built_models(myBiomodModelOut),
value=TRUE),
em.by = 'algo',
eval.metric = c('TSS'),
eval.metric.quality.threshold = c(0.7),
prob.mean = TRUE,
prob.cv = FALSE,
prob.ci = FALSE,
prob.ci.alpha = 0.05,
prob.median = FALSE,
committee.averaging = FALSE,
prob.mean.weight = FALSE,
prob.mean.weight.decay = 'proportional' )
# 5. Individual models projections on current environmental conditions
myBiomodProjection <- BIOMOD_Projection(
modeling.output = myBiomodModelOut,
new.env = myExpl,
proj.name = 'current',
selected.models = grep('_RF', get_built_models(
myBiomodModelOut), value=TRUE),
compress = FALSE,
build.clamping.mask = FALSE)
# 4. Creating the ensemble projections
BIOMOD_EnsembleForecasting( projection.output = myBiomodProjection,
EM.output = myBiomodEM)
# }
Run the code above in your browser using DataLab