# NOT RUN {
# species occurrences
DataSpecies <- read.csv(system.file("external/species/mammals_table.csv",
package="biomod2"), row.names = 1)
head(DataSpecies)
# the name of studied species
myRespName <- 'GuloGulo'
# the presence/absences data for our species
myResp <- as.numeric(DataSpecies[,myRespName])
# the XY coordinates of species data
myRespXY <- DataSpecies[,c("X_WGS84","Y_WGS84")]
# Environmental variables extracted from BIOCLIM (bio_3, bio_4, bio_7, bio_11 & bio_12)
myExpl = stack( system.file( "external/bioclim/current/bio3.grd",
package="biomod2"),
system.file( "external/bioclim/current/bio4.grd",
package="biomod2"),
system.file( "external/bioclim/current/bio7.grd",
package="biomod2"),
system.file( "external/bioclim/current/bio11.grd",
package="biomod2"),
system.file( "external/bioclim/current/bio12.grd",
package="biomod2"))
# 1. Formatting Data
myBiomodData <- BIOMOD_FormatingData(resp.var = myResp,
expl.var = myExpl,
resp.xy = myRespXY,
resp.name = myRespName)
# 2. Defining Models Options using default options.
myBiomodOption <- BIOMOD_ModelingOptions()
# 3. Doing Modelisation
myBiomodModelOut <- BIOMOD_Modeling( myBiomodData,
models = c('CTA','RF'),
models.options = myBiomodOption,
models.eval.meth ='TSS',
rescal.all.models=FALSE)
# 4.1 Projection on current environemental conditions
myBiomodProjection <- BIOMOD_Projection(modeling.output = myBiomodModelOut,
new.env = myExpl,
proj.name = 'current',
selected.models = 'all',
binary.meth = 'TSS',
compress = FALSE,
build.clamping.mask = FALSE)
# 4.2 Projection on future environemental conditions
myExplFuture = stack(system.file("external/bioclim/future/bio3.grd",package="biomod2"),
system.file("external/bioclim/future/bio4.grd",package="biomod2"),
system.file("external/bioclim/future/bio7.grd",package="biomod2"),
system.file("external/bioclim/future/bio11.grd",package="biomod2"),
system.file("external/bioclim/future/bio12.grd",package="biomod2"))
myBiomodProjectionFuture <- BIOMOD_Projection(modeling.output = myBiomodModelOut,
new.env = myExplFuture,
proj.name = 'future',
selected.models = 'all',
binary.meth = 'TSS',
compress = FALSE,
build.clamping.mask = TRUE)
# 5. Detect where our species occurances state is forecasted to change
# load binary projections
# here is rasters objects ('.grd')
currentPred <- stack("GuloGulo/proj_current/proj_current_GuloGulo_TSSbin.grd")
futurePred <- stack("GuloGulo/proj_future/proj_future_GuloGulo_TSSbin.grd")
# call the Range size function
myBiomodRangeSize <- BIOMOD_RangeSize(
CurrentPred=currentPred,
FutureProj=futurePred)
# see the results
myBiomodRangeSize$Compt.By.Models
plot(myBiomodRangeSize$Diff.By.Pixel)
# }
Run the code above in your browser using DataLab