# NOT RUN {
# species occurrences
DataSpecies <- read.csv(system.file("external/species/mammals_table.csv",
package="biomod2"))
head(DataSpecies)
# the name of studied species
myRespName <- 'GuloGulo'
# the presence/absences data for our species
myResp <- as.numeric(DataSpecies[,myRespName])
# the XY coordinates of species data
myRespXY <- DataSpecies[,c("X_WGS84","Y_WGS84")]
# Environmental variables extracted from BIOCLIM (bio_3, bio_4, bio_7, bio_11 & bio_12)
myExpl = stack( system.file( "external/bioclim/current/bio3.grd",
package="biomod2"),
system.file( "external/bioclim/current/bio4.grd",
package="biomod2"),
system.file( "external/bioclim/current/bio7.grd",
package="biomod2"),
system.file( "external/bioclim/current/bio11.grd",
package="biomod2"),
system.file( "external/bioclim/current/bio12.grd",
package="biomod2"))
# 1. Formatting Data
myBiomodData <- BIOMOD_FormatingData(resp.var = myResp,
expl.var = myExpl,
resp.xy = myRespXY,
resp.name = myRespName)
# 2. Defining Models Options using default options.
### Duration for turing all models sequential with default settings
### on 3.4 GHz processor: approx. 45 min tuning all models in parallel
### (on 8 cores) using foreach loops runs much faster: approx. 14 min
#library(doParallel);cl<-makeCluster(8);registerDoParallel(cl)
time.seq<-system.time(Biomod.tuning <- BIOMOD_tuning(myBiomodData,
env.ME = myExpl,
n.bg.ME = ncell(myExpl)))
#stopCluster(cl)
myBiomodModelOut <- BIOMOD_Modeling( myBiomodData,
models = c('RF','CTA'),
models.options = Biomod.tuning$models.options,
NbRunEval=1,
DataSplit=100,
VarImport=0,
models.eval.meth = c('ROC'),
do.full.models=FALSE,
modeling.id="test")
# eval.plot(Biomod.tuning$tune.MAXENT.Phillips at results)
par(mfrow=c(1,3))
plot(Biomod.tuning$tune.CTA.rpart)
plot(Biomod.tuning$tune.CTA.rpart2)
plot(Biomod.tuning$tune.RF)
# }
Run the code above in your browser using DataLab