# NOT RUN {
# }
# NOT RUN {
DataSpecies <- read.csv(system.file("external/species/mammals_table.csv",
package="biomod2"), row.names = 1)
head(DataSpecies)
# the name of studied species
myRespName <- 'GuloGulo'
# the presence/absences data for our species
myResp <- as.numeric(DataSpecies[,myRespName])
# remove all 0 from response vector to work with
# presence only data (Pseudo Absences selections)
rm_id <- which(myResp==0)
myResp <- myResp[-rm_id]
# the XY coordinates of species data
myRespXY <- DataSpecies[-rm_id,c("X_WGS84","Y_WGS84")]
# Environmental variables extracted from BIOCLIM
myExpl = stack( system.file( "external/bioclim/current/bio3.grd",
package="biomod2"),
system.file( "external/bioclim/current/bio4.grd",
package="biomod2"),
system.file( "external/bioclim/current/bio7.grd",
package="biomod2"),
system.file( "external/bioclim/current/bio11.grd",
package="biomod2"),
system.file( "external/bioclim/current/bio12.grd",
package="biomod2"))
# 1. Formatting Data
myBiomodData <- BIOMOD_FormatingData(resp.var = myResp,
expl.var = myExpl,
resp.xy = myRespXY,
resp.name = myRespName,
PA.nb.rep=3)
# 2. Defining Models Options using default options.
myBiomodOption <- BIOMOD_ModelingOptions()
# 3. Doing Modelisation
myBiomodModelOut <- BIOMOD_Modeling( myBiomodData,
models = c('CTA','RF','GLM','GAM','ANN','MARS'),
models.options = myBiomodOption,
NbRunEval=5,
DataSplit=70,
Prevalence=0.5,
models.eval.meth = c('TSS'),
do.full.models = FALSE,
rescal.all.models=T,
modeling.id='test')
# 4. Build ensemble-models that will be taken as reference
myBiomodEM <- BIOMOD_EnsembleModeling( modeling.output = myBiomodModelOut,
chosen.models = 'all',
em.by = 'all',
eval.metric = c('TSS'),
eval.metric.quality.threshold = c(0.7),
prob.mean = TRUE,
prob.median = TRUE)
# 5. Projection on future environmental conditions
## load future environmental conditions from biomod2 package
myExpl_fut <- stack( system.file( "external/bioclim/future/bio3.grd",
package="biomod2"),
system.file( "external/bioclim/future/bio4.grd",
package="biomod2"),
system.file( "external/bioclim/future/bio7.grd",
package="biomod2"),
system.file( "external/bioclim/future/bio11.grd",
package="biomod2"),
system.file( "external/bioclim/future/bio12.grd",
package="biomod2"))
myBiomodProjection <- BIOMOD_Projection(modeling.output = myBiomodModelOut,
new.env = myExpl_fut,
proj.name = 'future',
selected.models = 'all',
binary.meth = 'TSS',
compress = FALSE,
build.clamping.mask = TRUE)
BIOMOD_EnsembleForecasting(projection.output=myBiomodProjection,
EM.output=myBiomodEM,
binary.meth='TSS')
# 6. load binary projections
consensusBin <- stack('GuloGulo/proj_future/proj_future_GuloGulo_ensemble_TSSbin.grd')
projectionsBin <- stack('GuloGulo/proj_future/proj_future_GuloGulo_TSSbin.grd')
# 7. build a ref state based on ensemble-models
ref <- sampleRandom(subset(consensusBin, 1, drop=T), size=5000, sp=T, na.rm=T)
# 8. autoatic creation of groups matrix
find_groups <- function(diff_by_pix){
data.set <- sapply(names(diff_by_pix),biomod2:::.extractModelNamesInfo,info='data.set')
run.eval <- sapply(names(diff_by_pix),biomod2:::.extractModelNamesInfo,info='run.eval')
models <- sapply(names(diff_by_pix),biomod2:::.extractModelNamesInfo,info='models')
return(rbind(data.set,run.eval,models))
}
groups <- find_groups(projectionsBin)
# 9. plot ProbDensFunct graphs
ProbDensFunc(initial = ref,
projections = projectionsBin,
plothist=TRUE,
cvsn=TRUE,
groups=groups,
resolution=2,
filename=NULL,
lim=c(0.5,0.8,0.95))
## 3 plots should be produced.. Should be convenient to save it within a device
## supporting multiple plots.
# }
Run the code above in your browser using DataLab