# NOT RUN {
# species occurrences
DataSpecies <- read.csv(system.file("external/species/mammals_table.csv",
package="biomod2"), row.names = 1)
head(DataSpecies)
# the name of studied species
myRespName <- 'GuloGulo'
# the presence/absences data for our species
myResp <- as.numeric(DataSpecies[,myRespName])
# the XY coordinates of species data
myRespXY <- DataSpecies[,c("X_WGS84","Y_WGS84")]
# Environmental variables extracted from BIOCLIM (bio_3, bio_4, bio_7, bio_11 & bio_12)
myExpl = stack( system.file( "external/bioclim/current/bio3.grd",
package="biomod2"),
system.file( "external/bioclim/current/bio4.grd",
package="biomod2"),
system.file( "external/bioclim/current/bio7.grd",
package="biomod2"),
system.file( "external/bioclim/current/bio11.grd",
package="biomod2"),
system.file( "external/bioclim/current/bio12.grd",
package="biomod2"))
# 1. Formatting Data
myBiomodData <- BIOMOD_FormatingData(resp.var = myResp,
expl.var = myExpl,
resp.xy = myRespXY,
resp.name = myRespName)
# 2. Defining Models Options using default options.
myBiomodOption <- BIOMOD_ModelingOptions()
# 3. Doing Modelisation
myBiomodModelOut <- BIOMOD_Modeling( myBiomodData,
models = c('SRE','CTA','RF'),
models.options = myBiomodOption,
NbRunEval=1,
DataSplit=80,
Yweights=NULL,
VarImport=3,
models.eval.meth = c('TSS'),
SaveObj = TRUE,
rescal.all.models = FALSE,
do.full.models = FALSE,
modeling.id='test')
# 4. Evaluate model over another dataset (here the full one)
## creation of suitable dataset
data <- cbind(GuloGulo=get_formal_data(myBiomodModelOut,'resp.var'),
get_formal_data(myBiomodModelOut,'expl.var'))
## evaluation
evaluate(myBiomodModelOut, data=data, stat=c('ROC','TSS'))
# }
Run the code above in your browser using DataLab