Learn R Programming

biomod2 (version 4.2-5)

bm_CrossValidation: Build cross-validation table

Description

This internal biomod2 function allows to build a cross-validation table according to 6 different methods : random, kfold, block, strat, env or user.defined (see Details).

Usage

bm_CrossValidation(
  bm.format,
  strategy = "random",
  nb.rep = 0,
  perc = 0.8,
  k = 0,
  balance = "presences",
  env.var = NULL,
  strat = "both",
  user.table = NULL,
  do.full.models = FALSE
)

bm_CrossValidation_user.defined(bm.format, ...)

# S4 method for BIOMOD.formated.data bm_CrossValidation_user.defined(bm.format, user.table)

# S4 method for BIOMOD.formated.data.PA bm_CrossValidation_user.defined(bm.format, user.table)

bm_CrossValidation_random(bm.format, ...)

# S4 method for BIOMOD.formated.data bm_CrossValidation_random(bm.format, nb.rep, perc)

# S4 method for BIOMOD.formated.data.PA bm_CrossValidation_random(bm.format, nb.rep, perc)

bm_CrossValidation_kfold(bm.format, ...)

# S4 method for BIOMOD.formated.data bm_CrossValidation_kfold(bm.format, nb.rep, k)

# S4 method for BIOMOD.formated.data.PA bm_CrossValidation_kfold(bm.format, nb.rep, k)

bm_CrossValidation_block(bm.format, ...)

# S4 method for BIOMOD.formated.data bm_CrossValidation_block(bm.format)

# S4 method for BIOMOD.formated.data.PA bm_CrossValidation_block(bm.format)

bm_CrossValidation_strat(bm.format, ...)

# S4 method for BIOMOD.formated.data bm_CrossValidation_strat(bm.format, balance, strat, k)

# S4 method for BIOMOD.formated.data.PA bm_CrossValidation_strat(bm.format, balance, strat, k)

bm_CrossValidation_env(bm.format, ...)

# S4 method for BIOMOD.formated.data bm_CrossValidation_env(bm.format, balance, k, env.var)

# S4 method for BIOMOD.formated.data.PA bm_CrossValidation_env(bm.format, balance, k, env.var)

Value

A matrix or data.frame defining for each repetition (in columns) which observation lines should be used for models calibration (TRUE) and validation (FALSE).

Arguments

bm.format

a BIOMOD.formated.data or BIOMOD.formated.data.PA object returned by the BIOMOD_FormatingData function

strategy

a character corresponding to the cross-validation selection strategy, must be among random, kfold, block, strat, env or user.defined

nb.rep

(optional, default 0)
If strategy = 'random' or strategy = 'kfold', an integer corresponding to the number of sets (repetitions) of cross-validation points that will be drawn

perc

(optional, default 0)
If strategy = 'random', a numeric between 0 and 1 defining the percentage of data that will be kept for calibration

k

(optional, default 0)
If strategy = 'kfold' or strategy = 'strat' or strategy = 'env', an integer corresponding to the number of partitions

balance

(optional, default 'presences')
If strategy = 'strat' or strategy = 'env', a character corresponding to how data will be balanced between partitions, must be either presences or absence

env.var

(optional)
If strategy = 'env', a character corresponding to the environmental variables used to build the partition. k partitions will be built for each environmental variables. By default the function uses all environmental variables available.

strat

(optional, default 'both')
If strategy = 'env', a character corresponding to how data will partitioned along gradient, must be among x, y, both

user.table

(optional, default NULL)
If strategy = 'user.defined', a matrix or data.frame defining for each repetition (in columns) which observation lines should be used for models calibration (TRUE) and validation (FALSE)

do.full.models

(optional, default TRUE)
A logical value defining whether models should be also calibrated and validated over the whole dataset (and pseudo-absence datasets) or not

...

(optional, one or several of the following arguments depending on the selected method)

Author

Frank Breiner, Maya Gueguen

Details

Several parameters are available within the function and some of them can be used with different cross-validation strategies :

| ....... | random | kfold | block | strat | env |
__________________________________________________
| nb.rep. | x..... | x.... | ..... | ..... | ... |
| perc... | x..... | ..... | ..... | ..... | ... |
| k...... | ...... | x.... | ..... | x.... | x.. |
| balance | ...... | ..... | ..... | x.... | x.. |
| strat.. | ...... | ..... | ..... | x.... | ... |


Concerning column names of matrix output :

The number of columns depends on the strategy selected. The column names are given a posteriori of the selection, ranging from 1 to the number of columns. If do.full.models = TRUE, columns merging runs (and/or pseudo-absence datasets) are added at the end.

Concerning cross-validation strategies :

random

Most simple method to calibrate and validate a model is to split the original dataset in two datasets : one to calibrate the model and the other one to validate it. The splitting can be repeated nb.rep times.

k-fold

The k-fold method splits the original dataset in k datasets of equal sizes : each part is used successively as the validation dataset while the other k-1 parts are used for the calibration, leading to k calibration/validation ensembles. This multiple splitting can be repeated nb.rep times.

block

It may be used to test for model overfitting and to assess transferability in geographic space. block stratification was described in Muscarella et al. 2014 (see References). Four bins of equal size are partitioned (bottom-left, bottom-right, top-left and top-right).

stratified

It may be used to test for model overfitting and to assess transferability in geographic space. x and y stratification was described in Wenger and Olden 2012 (see References). y stratification uses k partitions along the y-gradient, x stratification does the same for the x-gradient. both returns 2k partitions: k partitions stratified along the x-gradient and k partitions stratified along the y-gradient.

environmental

It may be used to test for model overfitting and to assess transferability in environmental space. It returns k partitions for each variable given in env.var.

user-defined

Allow the user to give its own crossvalidation table. For a presence-absence dataset, column names must be formatted as: _allData_RUNx with x an integer. For a presence-only dataset for which several pseudo-absence dataset were generated, column names must be formatted as: _PAx_RUNy with x an integer and PAx an existing pseudo-absence dataset and y an integer

Concerning balance parameter :

If balance = 'presences', presences are divided (balanced) equally over the partitions (e.g. Fig. 1b in Muscarelly et al. 2014). Absences or pseudo-absences will however be unbalanced over the partitions especially if the presences are clumped on an edge of the study area.

If balance = 'absences', absences (resp. pseudo-absences or background) are divided (balanced) as equally as possible between the partitions (geographical balanced bins given that absences are spread over the study area equally, approach similar to Fig. 1 in Wenger et Olden 2012). Presences will however be unbalanced over the partitions especially if the presences are clumped on an edge of the study area.

References

  • Muscarella, R., Galante, P.J., Soley-Guardia, M., Boria, R.A., Kass, J.M., Uriarte, M. & Anderson, R.P. (2014). ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods in Ecology and Evolution, 5, 1198-1205.

  • Wenger, S.J. & Olden, J.D. (2012). Assessing transferability of ecological models: an underappreciated aspect of statistical validation. Methods in Ecology and Evolution, 3, 260-267.

See Also

get.block, kfold, BIOMOD_FormatingData, BIOMOD_Modeling

Other Secundary functions: bm_BinaryTransformation(), bm_FindOptimStat(), bm_MakeFormula(), bm_ModelingOptions(), bm_PlotEvalBoxplot(), bm_PlotEvalMean(), bm_PlotRangeSize(), bm_PlotResponseCurves(), bm_PlotVarImpBoxplot(), bm_PseudoAbsences(), bm_RunModelsLoop(), bm_SRE(), bm_SampleBinaryVector(), bm_SampleFactorLevels(), bm_Tuning(), bm_VariablesImportance()

Examples

Run this code

library(terra)
# Load species occurrences (6 species available)
data(DataSpecies)
head(DataSpecies)

# Select the name of the studied species
myRespName <- 'GuloGulo'

# Get corresponding presence/absence data
myResp <- as.numeric(DataSpecies[, myRespName])

# Get corresponding XY coordinates
myRespXY <- DataSpecies[, c('X_WGS84', 'Y_WGS84')]

# Load environmental variables extracted from BIOCLIM (bio_3, bio_4, bio_7, bio_11 & bio_12)
data(bioclim_current)
myExpl <- terra::rast(bioclim_current)

# \dontshow{
myExtent <- terra::ext(0,30,45,70)
myExpl <- terra::crop(myExpl, myExtent)
# }

# --------------------------------------------------------------- #
# Format Data with true absences
myBiomodData <- BIOMOD_FormatingData(resp.var = myResp,
                                     expl.var = myExpl,
                                     resp.xy = myRespXY,
                                     resp.name = myRespName)

# --------------------------------------------------------------- #
# Create the different validation datasets

# random selection
cv.r <- bm_CrossValidation(bm.format = myBiomodData,
                           strategy = "random",
                           nb.rep = 3,
                           k = 0.8)

# k-fold selection
cv.k <- bm_CrossValidation(bm.format = myBiomodData,
                           strategy = "kfold",
                           nb.rep = 2,
                           k = 3)

# block selection
cv.b <- bm_CrossValidation(bm.format = myBiomodData,
                           strategy = "block")

# stratified selection (geographic)
cv.s <- bm_CrossValidation(bm.format = myBiomodData,
                           strategy = "strat",
                           k = 2,
                           balance = "presences",
                           strat = "x")

# stratified selection (environmental)
cv.e <- bm_CrossValidation(bm.format = myBiomodData,
                           strategy = "env",
                           k = 2,
                           balance = "presences")

head(cv.r)
apply(cv.r, 2, table)
head(cv.k)
apply(cv.k, 2, table)
head(cv.b)
apply(cv.b, 2, table)
head(cv.s)
apply(cv.s, 2, table)
head(cv.e)
apply(cv.e, 2, table)


Run the code above in your browser using DataLab