This internal biomod2 function allows the user to compute all single
species distribution models (asked by the BIOMOD_Modeling function).
bm_RunModelsLoop(
bm.format,
weights,
calib.lines,
modeling.id,
models,
models.pa,
bm.options,
metric.eval,
var.import,
scale.models = TRUE,
nb.cpu = 1,
seed.val = NULL,
do.progress = TRUE
)bm_RunModel(
model,
run.name,
dir.name = ".",
modeling.id = "",
bm.options,
Data,
weights.vec,
calib.lines.vec,
eval.data = NULL,
metric.eval = c("ROC", "TSS", "KAPPA"),
var.import = 0,
scale.models = TRUE,
nb.cpu = 1,
seed.val = NULL,
do.progress = TRUE
)
A list containing for each model a list containing the following elements :
model : the name of correctly computed model
calib.failure : the name of incorrectly computed model
pred : the prediction outputs for calibration data
pred.eval : the prediction outputs for evaluation data
evaluation : the evaluation outputs returned by the
bm_FindOptimStat function
var.import : the mean of variables importance returned by the
bm_VariablesImportance function
a BIOMOD.formated.data or BIOMOD.formated.data.PA
object returned by the BIOMOD_FormatingData function
a matrix containing observation weights for each pseudo-absence (or
allData) dataset
a matrix containing calibration / validation lines for each
pseudo-absence (or allData) x repetition (or allRun) combination that can be
obtained with the bm_CrossValidation function
a character corresponding to the name (ID) of the simulation set
(a random number by default)
a vector containing model names to be computed, must be among
ANN, CTA, FDA, GAM, GBM, GLM, MARS,
MAXENT, MAXNET, RF, SRE, XGBOOST
(optional, default NULL)
A list containing for each model a vector defining which pseudo-absence datasets
are to be used, must be among colnames(bm.format@PA.table)
a BIOMOD.models.options object returned by the
bm_ModelingOptions function
a vector containing evaluation metric names to be used, must
be among ROC, TSS, KAPPA, ACCURACY, BIAS, POD,
FAR, POFD, SR, CSI, ETS, HK, HSS, OR,
ORSS
(optional, default NULL)
An integer corresponding to the number of permutations to be done for each variable to
estimate variable importance
(optional, default FALSE)
A logical value defining whether all models predictions should be scaled with a
binomial GLM or not
(optional, default 1)
An integer value corresponding to the number of computing resources to be used to
parallelize the single models computation
(optional, default NULL)
An integer value corresponding to the new seed value to be set
(optional, default TRUE)
A logical value defining whether the progress bar is to be rendered or not
a character corresponding to the model name to be computed, must be either
ANN, CTA, FDA, GAM, GBM, GLM, MARS,
MAXENT, MAXNET, RF, SRE, XGBOOST
a character corresponding to the model to be run (sp.name + pa.id +
run.id)
(optional, default .)
A character corresponding to the modeling folder
a data.frame containing observations, coordinates and environmental
variables that can be obtained with the get_species_data function
a vector containing observation weights the concerned pseudo-absence
(or allData) dataset
a vector containing calibration / validation lines for the
concerned pseudo-absence (or allData) x repetition (or allRun) combination
(optional, default NULL)
A data.frame containing validation observations, coordinates and environmental
variables that can be obtained with the get_eval_data function
Damien Georges
rpart, prune, gbm,
nnet, earth,
fda, mars, maxnet,
randomForest, xgboost,
bm_ModelingOptions, BIOMOD_Modeling,
bm_MakeFormula, bm_SampleFactorLevels,
bm_FindOptimStat, bm_VariablesImportance
Other Secundary functions:
bm_BinaryTransformation(),
bm_CrossValidation(),
bm_FindOptimStat(),
bm_MakeFormula(),
bm_ModelingOptions(),
bm_PlotEvalBoxplot(),
bm_PlotEvalMean(),
bm_PlotRangeSize(),
bm_PlotResponseCurves(),
bm_PlotVarImpBoxplot(),
bm_PseudoAbsences(),
bm_SRE(),
bm_SampleBinaryVector(),
bm_SampleFactorLevels(),
bm_Tuning(),
bm_VariablesImportance()