Learn R Programming

biomod2 (version 4.2-6-2)

BIOMOD.formated.data.PA: BIOMOD_FormatingData() output object class (with pseudo-absences)

Description

Class returned by BIOMOD_FormatingData, and used by bm_Tuning, bm_CrossValidation and BIOMOD_Modeling

Usage

# S4 method for numeric,data.frame
BIOMOD.formated.data.PA(
  sp,
  env,
  xy = NULL,
  dir.name = ".",
  sp.name = NULL,
  eval.sp = NULL,
  eval.env = NULL,
  eval.xy = NULL,
  PA.nb.rep = 1,
  PA.strategy = "random",
  PA.nb.absences = NULL,
  PA.dist.min = 0,
  PA.dist.max = NULL,
  PA.sre.quant = 0.025,
  PA.fact.aggr = NULL,
  PA.user.table = NULL,
  na.rm = TRUE,
  filter.raster = FALSE,
  seed.val = NULL
)

# S4 method for numeric,SpatRaster BIOMOD.formated.data.PA( sp, env, xy = NULL, dir.name = ".", sp.name = NULL, eval.sp = NULL, eval.env = NULL, eval.xy = NULL, PA.nb.rep = 1, PA.strategy = "random", PA.nb.absences = NULL, PA.dist.min = 0, PA.dist.max = NULL, PA.sre.quant = 0.025, PA.fact.aggr = NULL, PA.user.table = NULL, na.rm = TRUE, filter.raster = FALSE, seed.val = NULL )

Arguments

sp

A vector, a SpatVector without associated data (if presence-only), or a SpatVector object containing binary data (0 : absence, 1 : presence, NA : indeterminate) for a single species that will be used to build the species distribution model(s)
Note that old format from sp are still supported such as SpatialPoints (if presence-only) or SpatialPointsDataFrame object containing binary data.

env

a matrix, data.frame, SpatVector or SpatRaster object containing the explanatory variables (in columns or layers) that will be used to build the species distribution model(s).
Note that old format from raster and sp are still supported such as RasterStack and SpatialPointsDataFrame objects.

xy

(optional, default NULL)
If resp.var is a vector, a 2-columns matrix or data.frame containing the corresponding X and Y coordinates that will be used to build the species distribution model(s)

dir.name

a character corresponding to the modeling folder

sp.name

a character corresponding to the species name

eval.sp

(optional, default NULL)
A vector, a SpatVector without associated data (if presence-only), or a SpatVector object containing binary data (0 : absence, 1 : presence, NA : indeterminate) for a single species that will be used to evaluate the species distribution model(s) with independent data
Note that old format from sp are still supported such as SpatialPoints (if presence-only) or SpatialPointsDataFrame object containing binary data.

eval.env

(optional, default NULL)
A matrix, data.frame, SpatVector or SpatRaster object containing the explanatory variables (in columns or layers) that will be used to evaluate the species distribution model(s) with independent data
Note that old format from raster and sp are still supported such as RasterStack and SpatialPointsDataFrame objects.

eval.xy

(optional, default NULL)
If resp.var is a vector, a 2-columns matrix or data.frame containing the corresponding X and Y coordinates that will be used to evaluate the species distribution model(s) with independent data

PA.nb.rep

(optional, default 0)
If pseudo-absence selection, an integer corresponding to the number of sets (repetitions) of pseudo-absence points that will be drawn

PA.strategy

(optional, default NULL)
If pseudo-absence selection, a character defining the strategy that will be used to select the pseudo-absence points. Must be random, sre, disk or user.defined (see Details)

PA.nb.absences

(optional, default 0)
If pseudo-absence selection, and PA.strategy = 'random' or PA.strategy = 'sre' or PA.strategy = 'disk', an integer (or a vector of integer the same size as PA.nb.rep) corresponding to the number of pseudo-absence points that will be selected for each pseudo-absence repetition (true absences included)

PA.dist.min

(optional, default 0)
If pseudo-absence selection and PA.strategy = 'disk', a numeric defining the minimal distance to presence points used to make the disk pseudo-absence selection (in the same projection system units as coord, see Details)

PA.dist.max

(optional, default 0)
If pseudo-absence selection and PA.strategy = 'disk', a numeric defining the maximal distance to presence points used to make the disk pseudo-absence selection (in the same projection system units as coord, see Details)

PA.sre.quant

(optional, default 0)
If pseudo-absence selection and PA.strategy = 'sre', a numeric between 0 and 0.5 defining the half-quantile used to make the sre pseudo-absence selection (see Details)

PA.fact.aggr

(optional, default NULL)
If strategy = 'random' or strategy = 'disk', a integer defining the factor of aggregation to reduce the resolution

PA.user.table

(optional, default NULL)
If pseudo-absence selection and PA.strategy = 'user.defined', a matrix or data.frame with as many rows as resp.var values, as many columns as PA.nb.rep, and containing TRUE or FALSE values defining which points will be used to build the species distribution model(s) for each repetition (see Details)

na.rm

(optional, default TRUE)
A logical value defining whether points having one or several missing values for explanatory variables should be removed from the analysis or not

filter.raster

(optional, default FALSE)
If env is of raster type, a logical value defining whether sp is to be filtered when several points occur in the same raster cell

seed.val

(optional, default NULL)
An integer value corresponding to the new seed value to be set

Slots

dir.name

a character corresponding to the modeling folder

sp.name

a character corresponding to the species name

coord

a 2-columns data.frame containing the corresponding X and Y coordinates

data.species

a vector containing the species observations (0, 1 or NA)

data.env.var

a data.frame containing explanatory variables

data.mask

a SpatRaster object containing the mask of the studied area

has.data.eval

a logical value defining whether evaluation data is given

eval.coord

(optional, default NULL)
A 2-columns data.frame containing the corresponding X and Y coordinates for evaluation data

eval.data.species

(optional, default NULL)
A vector containing the species observations (0, 1 or NA) for evaluation data

eval.data.env.var

(optional, default NULL)
A data.frame containing explanatory variables for evaluation data

PA.strategy

a character corresponding to the pseudo-absence selection strategy

PA.table

a data.frame containing the corresponding table of selected pseudo-absences (indicated by TRUE or FALSE) from the pa.tab list element returned by the bm_PseudoAbsences function

Author

Damien Georges

See Also

BIOMOD_FormatingData, bm_PseudoAbsences, bm_Tuning, bm_CrossValidation, BIOMOD_Modeling, bm_RunModelsLoop

Other Toolbox objects: BIOMOD.ensemble.models.out, BIOMOD.formated.data, BIOMOD.models.options, BIOMOD.models.out, BIOMOD.options.dataset, BIOMOD.options.default, BIOMOD.projection.out, BIOMOD.stored.data, biomod2_ensemble_model, biomod2_model

Examples

Run this code

showClass("BIOMOD.formated.data.PA")

## ----------------------------------------------------------------------- #
library(terra)

# Load species occurrences (6 species available)
data(DataSpecies)
head(DataSpecies)

# Select the name of the studied species
myRespName <- 'GuloGulo'

# Keep only presence informations
DataSpecies <- DataSpecies[which(DataSpecies[, myRespName] == 1), ]

# Get corresponding presence/absence data
myResp <- as.numeric(DataSpecies[, myRespName])

# Get corresponding XY coordinates
myRespXY <- DataSpecies[, c('X_WGS84', 'Y_WGS84')]

# Load environmental variables extracted from BIOCLIM (bio_3, bio_4, bio_7, bio_11 & bio_12)
data(bioclim_current)
myExpl <- terra::rast(bioclim_current)

# \dontshow{
myExtent <- terra::ext(0,30,45,70)
myExpl <- terra::crop(myExpl, myExtent)
# }

## ----------------------------------------------------------------------- #
# Format Data with pseudo-absences : random method
myBiomodData <- BIOMOD_FormatingData(resp.var = myResp,
                                     expl.var = myExpl,
                                     resp.xy = myRespXY,
                                     resp.name = myRespName,
                                     PA.nb.rep = 4,
                                     PA.strategy = 'random',
                                     PA.nb.absences = 1000)
myBiomodData
plot(myBiomodData)


Run the code above in your browser using DataLab