Learn R Programming

bit64 (version 4.6.0-1)

match.integer64: 64-bit integer matching

Description

match returns a vector of the positions of (first) matches of its first argument in its second. %in% is a more intuitive interface as a binary operator, which returns a logical vector indicating if there is a match or not for its left operand.

Usage

# S3 method for integer64
match(x, table, nomatch = NA_integer_, nunique = NULL, method = NULL, ...)

# S3 method for integer64 %in%(x, table, ...)

Value

A vector of the same length as x.

match: An integer vector giving the position in table of the first match if there is a match, otherwise nomatch.

If x[i] is found to equal table[j] then the value returned in the i-th position of the return value is j, for the smallest possible j. If no match is found, the value is nomatch.

%in%: A logical vector, indicating if a match was located for each element of x: thus the values are TRUE or FALSE and never NA.

Arguments

x

integer64 vector: the values to be matched, optionally carrying a cache created with hashcache()

table

integer64 vector: the values to be matched against, optionally carrying a cache created with hashcache() or sortordercache()

nomatch

the value to be returned in the case when no match is found. Note that it is coerced to integer.

nunique

NULL or the number of unique values of table (including NA). Providing nunique can speed-up matching when table has no cache. Note that a wrong nunique can cause undefined behaviour up to a crash.

method

NULL for automatic method selection or a suitable low-level method, see details

...

ignored

Details

These functions automatically choose from several low-level functions considering the size of x and table and the availability of caches.

Suitable methods for %in%.integer64 are

  • hashpos (hash table lookup)

  • hashrev (reverse lookup)

  • sortorderpos (fast ordering)

  • orderpos (memory saving ordering).

Suitable methods for match.integer64 are

  • hashfin (hash table lookup)

  • hashrin (reverse lookup)

  • sortfin (fast sorting)

  • orderfin (memory saving ordering).

See Also

Examples

Run this code
x <- as.integer64(c(NA, 0:9), 32)
table <- as.integer64(c(1:9, NA))
match.integer64(x, table)
"%in%.integer64"(x, table)

x <- as.integer64(sample(c(rep(NA, 9), 0:9), 32, TRUE))
table <- as.integer64(sample(c(rep(NA, 9), 1:9), 32, TRUE))
stopifnot(identical(match.integer64(x, table), match(as.integer(x), as.integer(table))))
stopifnot(identical("%in%.integer64"(x, table), as.integer(x) %in% as.integer(table)))

if (FALSE) {
    message("check when reverse hash-lookup beats standard hash-lookup")
    e <- 4:24
    timx <- timy <- matrix(NA, length(e), length(e), dimnames=list(e,e))
    for (iy in seq_along(e))
    for (ix in 1:iy){
        nx <- 2^e[ix]
        ny <- 2^e[iy]
        x <- as.integer64(sample(ny, nx, FALSE))
        y <- as.integer64(sample(ny, ny, FALSE))
        #hashfun(x, bits=as.integer(5))
        timx[ix,iy] <- repeat.time({
        hx <- hashmap(x)
        py <- hashrev(hx, y)
        })[3]
        timy[ix,iy] <- repeat.time({
        hy <- hashmap(y)
        px <- hashpos(hy, x)
        })[3]
        #identical(px, py)
        print(round(timx[1:iy,1:iy]/timy[1:iy,1:iy], 2), na.print="")
    }

    message("explore best low-level method given size of x and table")
    B1 <- 1:27
    B2 <- 1:27
    tim <- array(NA, dim=c(length(B1), length(B2), 5)
 , dimnames=list(B1, B2, c("hashpos","hashrev","sortpos1","sortpos2","sortpos3")))
    for (i1 in B1)
    for (i2 in B2)
    {
      b1 <- B1[i1]
      b2 <- B1[i2]
      n1 <- 2^b1
      n2 <- 2^b2
      x1 <- as.integer64(c(sample(n2, n1-1, TRUE), NA))
      x2 <- as.integer64(c(sample(n2, n2-1, TRUE), NA))
      tim[i1,i2,1] <- repeat.time({h <- hashmap(x2);hashpos(h, x1);rm(h)})[3]
      tim[i1,i2,2] <- repeat.time({h <- hashmap(x1);hashrev(h, x2);rm(h)})[3]
      s <- clone(x2); o <- seq_along(s); ramsortorder(s, o)
      tim[i1,i2,3] <- repeat.time(sortorderpos(s, o, x1, method=1))[3]
      tim[i1,i2,4] <- repeat.time(sortorderpos(s, o, x1, method=2))[3]
      tim[i1,i2,5] <- repeat.time(sortorderpos(s, o, x1, method=3))[3]
      rm(s,o)
      print(apply(tim, 1:2, function(ti)if(any(is.na(ti)))NA else which.min(ti)))
    }
}

Run the code above in your browser using DataLab