Learn R Programming

bitrugs (version 0.1)

transmission_analysis: Estimate transmission dynamics and parameters

Description

MCMC algorithm to sample transmission parameters, infection times and transmission routes.

Usage

transmission_analysis(epidata, distmat, seqIDs, resmat, iterations = 1e+05, augmoves = 10, feedb = 1, tag = 1, noaug = 1, model = 2, path = NULL, sensprior = c(1, 1), impprior = c(1, 1), betaprior = 1e+06, gammaprior = c(1, 1), gammaGprior = c(1, 1), tparprior = 1e+06, sigma = c(0.004, 0.03, 0.005, 0.25))

Arguments

epidata
Epidemiological data, in the form of an integer matrix consisting of columns: patient ID, day of admission, day of discharge.
distmat
Genetic distance matrix. Entry [i,j] provides the pairwise SNP distance between patients seqIDs[i] and seqIDs[j].
seqIDs
Vector of patient IDs corresponding to the rows and columns of distmat.
resmat
Matrix of test results, each row corresponding to the patient ID in epidata. Entry 0=negative, 1=positive, -1=missing.
iterations
Number of iterations for the MCMC algorithm to run.
augmoves
Number of data augmentation moves to make per MCMC iteration.
feedb
Frequency of console feedback; provided every 10^feeback iterations, with parameter snapshot every 10^feeback+1 iterations.
tag
Integer tag to attach to output file.
noaug
Level of data augmentation. 0=none, 1=sample infection times and routes for patients with positive swabs only, 2=sample infection times and routes for all patients.
model
Genetic diversity model to use. 1=importation clustering model, 2=transmission chain diversity model.
path
Location to store output files.
sensprior
Prior Beta distribution parameters for test sensitivity (z).
impprior
Prior Beta distribution parameters for importation probability (p).
betaprior
Prior exponential distribution mean for transmission rate (beta).
gammaprior
Prior Beta distribution parameters for within host/group genetic diversity (gamma).
gammaGprior
Prior Beta distribution parameters for between host/group genetic diversity (gamma_gl).
tparprior
Prior exponential distribution mean for genpar.
sigma
Vector of initial variances for Normal proposal distributions for beta, gamma, gamma_gl and genpar. MCMC algorithm automatically updates variances to reach acceptance rate of 20-40%.

Value

Returns a matrix in which each row corresponds to MCMC iteration. Columns are as follows: p, z, beta, gamma, gamma_gl, genpar, number of importations, number of acquisitions, number of groups, likelihood, infection source [cols 11:(n+10)], infection group [cols (n+10):(2n+10)].

Details

MCMC algorithm runs in C, and writes output file to specified path.

Examples

Run this code
  ## Not run: 
#   data(hospitaldata)
#   # Short example run
#   mcmcoutput <- transmission_analysis(epidata=hospitaldata$epi, distmat=hospitaldata$distmat, 
#                            seqIDs=hospitaldata$patientseqIDs, resmat=hospitaldata$resmat, 
#                            path=getwd(), iterations=10000, augmoves=5)
#   traceplots(mcmcoutput)
#   ## End(Not run)

Run the code above in your browser using DataLab