t1 <- cbind(1:100, sin(seq(0, 10 * 2 * pi, length.out = 100)))
t2 <- cbind(1:100, sin(seq(0, 10 * 2 * pi, length.out = 100) + 0.1 * pi))
t3 <- cbind(1:100, rnorm(100)) # white noise
## Compute wavelet spectra
wt.t1 <- wt(t1)
wt.t2 <- wt(t2)
wt.t3 <- wt(t3)
## Store all wavelet spectra into array
w.arr <- array(dim = c(3, NROW(wt.t1$wave), NCOL(wt.t1$wave)))
w.arr[1, , ] <- wt.t1$wave
w.arr[2, , ] <- wt.t2$wave
w.arr[3, , ] <- wt.t3$wave
## Compute dissimilarity and distance matrices
w.arr.dis <- wclust(w.arr)
plot(hclust(w.arr.dis$dist.mat, method = "ward.D"),
sub = "", main = "", ylab = "Dissimilarity", hang = -1)
Run the code above in your browser using DataLab