Learn R Programming

blavaan (version 0.5-6)

ppmc: Posterior Predictive Model Checks

Description

This function allows users to conduct a posterior predictive model check to assess the global or local fit of a latent variable model using any discrepancy function that can be applied to a lavaan model.

Usage

ppmc(object, thin = 1, fit.measures = c("srmr","chisq"), discFUN = NULL,
     conditional = FALSE)

# S4 method for blavPPMC summary(object, ...)

# S3 method for ppmc summary(object, discFUN, dist = c("obs","sim"), central.tendency = c("mean","median","mode"), hpd = TRUE, prob = .95, to.data.frame = FALSE, diag = TRUE, sort.by = NULL, decreasing = FALSE)

# S3 method for blavPPMC plot(x, ..., discFUN, element, central.tendency = "", hpd = TRUE, prob = .95, nd = 3)

# S3 method for blavPPMC hist(x, ..., discFUN, element, hpd = TRUE, prob = .95, printLegend = TRUE, legendArgs = list(x = "topleft"), densityArgs = list(), nd = 3)

# S3 method for blavPPMC pairs(x, discFUN, horInd = 1:DIM, verInd = 1:DIM, printLegend = FALSE, ...)

Value

An S4 object of class blavPPMC consisting of 5 list slots:

@discFUN

The user-supplied discFUN, or the call to fitMeasures that returns fit.measures.

@dims

The dimensions of the object returned by each discFUN.

@PPP

The posterior predictive p value for each discFUN element.

@obsDist

The posterior distribution of realize values of discFUN applied to observed data.

@simDist

The posterior predictive distribution of values of discFUN applied to data simulated from the posterior samples.

The summary() method returns a numeric vector if discFUN

returns a scalar, a data.frame with one discrepancy function per row if discFUN returns a numeric vector, and a list with one summary statistic per element if discFUN returns a matrix

or multidimensional array.

The plot and pairs methods invisibly return NULL, printing a plot (or scatterplot matrix) to the current device.

The hist method invisibly returns a list or arguments that can be passed to the function for which the list element is named. Users can edit the arguments in the list to customize their histograms.

Arguments

object,x

An object of class blavaan.

thin

Optional integer indicating how much to thin each chain. Default is 1L, indicating not to thin the chains in object.

fit.measures

character vector indicating the names of global discrepancy measures returned by fitMeasures. Ignored unless discFUN is NULL, but users may include fitMeasures in the list of discrepancy functions in discFUN. For ordinal models, the "logl" or "chisq" computations are done via lavaan.

discFUN

function, or a list of functions, that can be called on an object of class lavaan. Each function must return an object whose mode is numeric, but may be a vector, matrix, or multidimensional array. In the summary and plot methods, discFUN is a character indicating which discrepancy function to summarize.

conditional

logical indicating whether or not, during artificial data generation, we should condition on the estimated latent variables. Requires the model to be estimated with save.lvs = TRUE.

element

numeric or character indicating the index (in each dimension of the discFUN output, if multiple) to plot.

horInd,verInd

Similar to element, but a numeric or character vector indicating the indices of a matrix to plot in a scatterplot matrix. If horInd==verInd, histograms will be plotted in the upper triangle.

dist

character indicating whether to summarize the distribution of discFUN on either the observed or simulated data.

central.tendency

character indicating which statistics should be used to characterize the location of the posterior (predictive) distribution. By default, all 3 statistics are returned for the summary method, but none for the plot method. The posterior mean is labeled EAP for expected a posteriori estimate, and the mode is labeled MAP for modal a posteriori estimate.

hpd

logical indicating whether to calculate the highest posterior density (HPD) credible interval for discFUN.

prob

The "confidence" level of the credible interval(s).

nd

The number of digits to print in the scatterplot.

to.data.frame

logical indicating whether the summary of a symmetric 2-dimensional matrix returned by discFUN should have its unique elements stored in rows of a data.frame that can be sorted for convenience of identifying large discrepancies. If discFUN returns an asymmetric 2-dimensional matrix, the list of matrices returned by the summary can also be converted to a data.frame.

diag

Passed to lower.tri if to.data.frame=TRUE.

sort.by

character. If summary returns a data.frame, it can be sorted by this column name using order. Note that if discFUN returns an asymmetric 2-dimensional matrix, each data.frame in the returned list will be sorted independently, so the rows are unlikely to be consistent across summary statistics.

decreasing

Passed to order if !is.null(sort.by).

...

Additional graphical parameters to be passed to plot.default.

printLegend

logical. If TRUE (default), a legend will be printed with the histogram

legendArgs

list of arguments passed to the legend function. The default argument is a list placing the legend at the top-left of the figure.

densityArgs

list of arguments passed to the density function, used to obtain densities for the hist method.

Author

Terrence D. Jorgensen (University of Amsterdam; TJorgensen314@gmail.com)

References

Levy, R. (2011). Bayesian data--model fit assessment for structural equation modeling. Structural Equation Modeling, 18(4), 663--685. doi:10.1080/10705511.2011.607723

Examples

Run this code
 if (FALSE) {
data(HolzingerSwineford1939, package = "lavaan")

HS.model <- ' visual  =~ x1 + x2 + x3
              textual =~ x4 + x5 + x6
              speed   =~ x7 + x8 + x9 '
## fit single-group model
fit <- bcfa(HS.model, data = HolzingerSwineford1939, 
            n.chains = 2, burnin = 1000, sample = 500)
## fit multigroup model
fitg <- bcfa(HS.model, data = HolzingerSwineford1939,
             n.chains = 2, burnin = 1000, sample = 500, group = "school")


## Use fit.measures as a shortcut for global fitMeasures only
## - Note that indices calculated from the "df" are only appropriate under
##   noninformative priors, such that pD approximates the number of estimated
##   parameters counted under ML estimation; incremental fit indices
##   introduce further complications)

AFIs <- ppmc(fit, thin = 10, fit.measures = c("srmr","chisq","rmsea","cfi"))
summary(AFIs)                 # summarize the whole vector in a data.frame
hist(AFIs, element = "rmsea") # only plot one discrepancy function at a time
plot(AFIs, element = "srmr")


## define a list of custom discrepancy functions
## - (global) fit measures
## - (local) standardized residuals

discFUN <- list(global = function(fit) {
                  fitMeasures(fit, fit.measures = c("cfi","rmsea","srmr","chisq"))
                },
                std.cov.resid = function(fit) lavResiduals(fit, zstat = FALSE,
                                                           summary = FALSE)$cov,
                std.mean.resid = function(fit) lavResiduals(fit, zstat = FALSE,
                                                            summary = FALSE)$mean)
out1g <- ppmc(fit, discFUN = discFUN)

## summarize first discrepancy by default (fit indices)
summary(out1g)
## some model-implied correlations look systematically over/underestimated
summary(out1g, discFUN = "std.cov.resid", central.tendency = "EAP")
hist(out1g, discFUN = "std.cov.resid", element = c(1, 7))
plot(out1g, discFUN = "std.cov.resid", element = c("x1","x7"))
## For ease of investigation, optionally export summary as a data.frame,
## sorted by size of average residual
summary(out1g, discFUN = "std.cov.resid", central.tendency = "EAP",
        to.data.frame = TRUE, sort.by = "EAP")
## or sorted by size of PPP
summary(out1g, discFUN = "std.cov.resid", central.tendency = "EAP",
        to.data.frame = TRUE, sort.by = "PPP_sim_LessThan_obs")

## define a list of custom discrepancy functions for multiple groups
## (return each group's numeric output using a different function)

disc2g <- list(global = function(fit) {
                 fitMeasures(fit, fit.measures = c("cfi","rmsea","mfi","srmr","chisq"))
               },
               cor.resid1 = function(fit) lavResiduals(fit, zstat = FALSE,
                                                       type = "cor.bollen",
                                                       summary = FALSE)[[1]]$cov,
               cor.resid2 = function(fit) lavResiduals(fit, zstat = FALSE,
                                                       type = "cor.bollen",
                                                       summary = FALSE)[[2]]$cov)
out2g <- ppmc(fitg, discFUN = disc2g, thin = 2)
## some residuals look like a bigger problem in one group than another
pairs(out2g, discFUN = "cor.resid1", horInd = 1:3, verInd = 7:9) # group 1
pairs(out2g, discFUN = "cor.resid2", horInd = 1:3, verInd = 7:9) # group 2

## print all to file: must be a LARGE picture. First group 1 ...
png("cor.resid1.png", width = 1600, height = 1200)
pairs(out2g, discFUN = "cor.resid1")
dev.off()
## ... then group 2
png("cor.resid2.png", width = 1600, height = 1200)
pairs(out2g, discFUN = "cor.resid2")
dev.off()
}

Run the code above in your browser using DataLab