Learn R Programming

boot (version 1.2-10)

simplex: Simplex Method for Linear Programming Problems

Description

This function will optimize the linear function a%*%x subject to the constraints A1%*%x <= b1<="" code="">, A2%*%x >= b2, A3%*%x = b3 and x >= 0. Either maximization or minimization is possible but the default is minimization.

Usage

simplex(a, A1=NULL, b1=NULL, A2=NULL, b2=NULL, A3=NULL, 
        b3=NULL, maxi=FALSE, n.iter=n + 2 * m, eps=1e-10)

Arguments

a
A vector of length n which gives the coefficients of the objective function.
A1
An m1 by n matrix of coefficients for the "
b1
A vector of length m1 giving the right hand side of the "<=" constraints.="" this="" argument="" is="" required if="" A1 is given and ignored otherwise. All values in b1 must be non-negative.
A2
An m2 by n matrix of coefficients for the ">=" type of constraints.
b2
A vector of length m2 giving the right hand side of the ">=" constraints. This argument is required if A2 is given and ignored otherwise. All values in b2 must be non-negative. Note that the constraints x >=
A3
An m3 by n matrix of coefficients for the equality constraints.
b3
A vector of length m3 giving the right hand side of equality constraints. This argument is required if A3 is given and ignored otherwise. All values in b3 must be non-negative.
maxi
A logical flag which specifies minimization if FALSE (default) and maximization otherwise. If maxi is TRUE then the maximization problem is recast as a minimization problem by changing the objective function coeff
n.iter
The maximum number of iterations to be conducted in each phase of the simplex method. The default is n+2*(m1+m2+m3).
eps
The floating point tolerance to be used in tests of equality.

Value

  • An object of class "simplex".

Details

The method employed by this function is the two phase tableau simplex method. If there are ">=" or equality constraints an initial feasible solution is not easy to find. To find a feasible solution an artificial variable is introduced into each ">=" or equality constraint and an auxiliary objective function is defined as the sum of these artificial variables. If a feasible solution to the set of constraints exists then the auxiliary objective will be minimized when all of the artificial variables are 0. These are then discarded and the original problem solved starting at the solution to the auxiliary problem. If the only constraints are of the "

References

Gill, P.E., Murray, W. and Wright, M.H. (1991) Numerical Linear Algebra and Optimization Vol. 1. Addison-Wesley.

Press, W.H., Teukolsky, S.A., Vetterling, W.T. and Flannery, B.P. (1992) Numerical Recipes: The Art of Scientific Computing (Second Edition). Cambridge University Press.

Examples

Run this code
#  This example is taken from Exercise 7.5 of Gill, Murray, 
#  and Wright (1991).
enj <- c(200, 6000, 3000, -200)
fat <- c(800, 6000, 1000, 400)
vitx <- c(50, 3, 150, 100)
vity <- c(10, 10, 75, 100)
vitz <- c(150, 35, 75, 5)
simplex(a=enj, A1=fat, b1=13800, A2=rbind(vitx, vity, vitz), 
        b2=c(600, 300, 550), maxi=TRUE)

Run the code above in your browser using DataLab