# NOT RUN {
# We fit an exponential model to the air-conditioning data and use
# that for a parametric bootstrap. Then we look at plots of the
# resampled means.
air.rg <- function(data, mle) rexp(length(data), 1/mle)
air.boot <- boot(aircondit$hours, mean, R = 999, sim = "parametric",
ran.gen = air.rg, mle = mean(aircondit$hours))
plot(air.boot)
# In the difference of means example for the last two series of the
# gravity data
grav1 <- gravity[as.numeric(gravity[, 2]) >= 7, ]
grav.fun <- function(dat, w) {
strata <- tapply(dat[, 2], as.numeric(dat[, 2]))
d <- dat[, 1]
ns <- tabulate(strata)
w <- w/tapply(w, strata, sum)[strata]
mns <- as.vector(tapply(d * w, strata, sum)) # drop names
mn2 <- tapply(d * d * w, strata, sum)
s2hat <- sum((mn2 - mns^2)/ns)
c(mns[2] - mns[1], s2hat)
}
grav.boot <- boot(grav1, grav.fun, R = 499, stype = "w", strata = grav1[, 2])
plot(grav.boot)
# now suppose we want to look at the studentized differences.
grav.z <- (grav.boot$t[, 1]-grav.boot$t0[1])/sqrt(grav.boot$t[, 2])
plot(grav.boot, t = grav.z, t0 = 0)
# In this example we look at the one of the partial correlations for the
# head dimensions in the dataset frets.
frets.fun <- function(data, i) {
pcorr <- function(x) {
# Function to find the correlations and partial correlations between
# the four measurements.
v <- cor(x)
v.d <- diag(var(x))
iv <- solve(v)
iv.d <- sqrt(diag(iv))
iv <- - diag(1/iv.d) %*% iv %*% diag(1/iv.d)
q <- NULL
n <- nrow(v)
for (i in 1:(n-1))
q <- rbind( q, c(v[i, 1:i], iv[i,(i+1):n]) )
q <- rbind( q, v[n, ] )
diag(q) <- round(diag(q))
q
}
d <- data[i, ]
v <- pcorr(d)
c(v[1,], v[2,], v[3,], v[4,])
}
frets.boot <- boot(log(as.matrix(frets)), frets.fun, R = 999)
plot(frets.boot, index = 7, jack = TRUE, stinf = FALSE, useJ = FALSE)
# }
Run the code above in your browser using DataLab