Learn R Programming

bpp (version 1.0.4)

estimate_posterior: Posterior density conditional on known interim result

Description

If we update the prior with a known estimate at an interim analysis, we get this density.

Usage

estimate_posterior(x, prior = c("normal", "flat"), interimmean, interimSE, priormean, ...)

Arguments

x

Value at which to evaluate the function.

prior

Prior density on effect sizes.

interimmean

Mean of the data.

interimSE

(Known) standard error of interimmean.

priormean

Prior mean.

...

Further arguments specific to the chosen prior (see bpp for examples).

Value

Value of the function, a real number.

References

Rufibach, K., Jordan, P., Abt, M. (2016a). Sequentially Updating the Likelihood of Success of a Phase 3 Pivotal Time-to-Event Trial based on Interim Analyses or External Information. J. Biopharm. Stat., 26(2), 191--201.

Examples

Run this code
# NOT RUN {
# type ?bpp_1interim for code of all the computations in Rufibach et al (2016a).

# }

Run the code above in your browser using DataLab