These methods create a brainGraphList
with attributes specific to the
results of brainGraph_GLM
, mtpc
, or
NBS
. The graphs
element of the returned object will
contain one graph for each contrast.
# S3 method for bg_GLM
make_brainGraphList(x, atlas = x$atlas,
type = "observed", level = "contrast", set.attrs = FALSE,
modality = NULL, weighting = NULL, threshold = NULL,
gnames = x$con.name, ...)# S3 method for mtpc
make_brainGraphList(x, atlas = x$atlas,
type = "observed", level = "contrast", set.attrs = FALSE,
modality = NULL, weighting = NULL, threshold = NULL,
gnames = x$con.name, ...)
# S3 method for NBS
make_brainGraphList(x, atlas, type = "observed",
level = "contrast", set.attrs = TRUE, modality = NULL,
weighting = NULL, threshold = NULL, gnames = x$con.name,
mode = "undirected", weighted = TRUE, diag = FALSE, ...)
A brainGraphList
object, with a graph object for each contrast
with additional attributes:
name (contrast name), outcome (the outcome variable), alpha (the significance level); for MTPC: tau.mtpc, S.mtpc, S.crit, A.crit
size2 (t-statistic); size (the t-stat
transformed for visualization purposes); p (equal to \(1-p\));
p.fdr (equal to \(1-p_{FDR}\), the FDR-adjusted p-value);
effect.size (the contrast of parameter estimates for t-contrasts;
the extra sum of squares for F-contrasts); se (the
standard error of gamma); A.mtpc, sig (binary
indicating whether A.mtpc > A.crit
) (for MTPC)
make_brainGraphList.NBS
returns graphs with additional
attributes:
comp (integer vector indicating connected component membership), p.nbs (P-value for each component)
stat (the test statistic for each connection), p (the P-value)
A bg_GLM
, mtpc
, or NBS
object
Character string specifying the brain atlas to use
Character string indicating the type of graphs. Default:
observed
Character string indicating whether the graphs are subject-,
group-, or contrast-specific. Default: 'subject'
Logical indicating whether to assign all graph-, vertex-,
and edge-level attributes (via set_brainGraph_attr
). Default:
TRUE
Character string indicating imaging modality (e.g. 'dti').
Default: NULL
Character string indicating how the edges are weighted
(e.g., 'fa', 'pearson', etc.). Default: NULL
Integer or number indicating the threshold used when
“sparsifying” the connectivity matrix (if any). Default: NULL
Character vector of graph names (e.g., study IDs if
level='subject'
). Default: NULL
Other arguments passed to set_brainGraph_attr
Character string defining how the matrix should be interpreted.
Default: 'undirected'
Logical specifying whether to create a weighted network
Logical indicating whether to include the diagonal of the
connectivity matrix. Default: FALSE
brainGraph_GLM, mtpc, NBS
Other Graph creation functions: Creating_Graphs
,
brainGraphList
,
make_ego_brainGraph