# Example in Saha, K., & Paul, S. (2005). Bias-corrected maximum
# likelihood estimator of the negative binomial dispersion
# parameter. Biometrics, 61, 179--185.
#
# Frequency distribution of red mites on apple leaves.
nomites <- 0:8
noleaves <- c(70, 38, 17, 10, 9, 3, 2, 1, 0)
fit_glmnb <- MASS::glm.nb(nomites~1,link="identity",weights = noleaves)
fit_brnb <- brnb(nomites ~ 1, link = "identity", transformation = "inverse",
type = "ML",weights = noleaves)
## Let us simulate 10 response vectors
sim_glmnb <- simulate(fit_glmnb, nsim = 10, seed = 123)
sim_brnb <- simulate(fit_brnb, nsim = 10, seed = 123)
# The results from glm.nb and brnb with type = "ML" are
# exactly the same
all.equal(sim_glmnb, sim_brnb, check.attributes = FALSE)
Run the code above in your browser using DataLab