Learn R Programming

brms (version 2.15.0)

posterior_summary: Summarize Posterior Samples

Description

Summarizes posterior samples based on point estimates (mean or median), estimation errors (SD or MAD) and quantiles.

Usage

posterior_summary(x, ...)

# S3 method for default posterior_summary(x, probs = c(0.025, 0.975), robust = FALSE, ...)

# S3 method for brmsfit posterior_summary(x, pars = NA, probs = c(0.025, 0.975), robust = FALSE, ...)

Arguments

x

An R object.

...

More arguments passed to or from other methods.

probs

The percentiles to be computed by the quantile function.

robust

If FALSE (the default) the mean is used as the measure of central tendency and the standard deviation as the measure of variability. If TRUE, the median and the median absolute deviation (MAD) are applied instead.

pars

Names of parameters for which posterior samples should be returned, as given by a character vector or regular expressions. By default, all posterior samples of all parameters are extracted.

Value

A matrix where rows indicate parameters and columns indicate the summary estimates.

Examples

Run this code
# NOT RUN {
fit <- brm(time ~ age * sex, data = kidney)
posterior_summary(fit)
# }
# NOT RUN {
# }

Run the code above in your browser using DataLab