Learn R Programming

brms (version 2.19.0)

posterior_samples.brmsfit: (Deprecated) Extract Posterior Samples

Description

Extract posterior samples of specified parameters. The posterior_samples method is deprecated. We recommend using the more modern and consistent as_draws_* extractor functions of the posterior package instead.

Usage

# S3 method for brmsfit
posterior_samples(
  x,
  pars = NA,
  fixed = FALSE,
  add_chain = FALSE,
  subset = NULL,
  as.matrix = FALSE,
  as.array = FALSE,
  ...
)

posterior_samples(x, pars = NA, ...)

Value

A data.frame (matrix or array) containing the posterior samples.

Arguments

x

An R object typically of class brmsfit

pars

Names of parameters for which posterior samples should be returned, as given by a character vector or regular expressions. By default, all posterior samples of all parameters are extracted.

fixed

Indicates whether parameter names should be matched exactly (TRUE) or treated as regular expressions (FALSE). Default is FALSE.

add_chain

A flag indicating if the returned data.frame should contain two additional columns. The chain column indicates the chain in which each sample was generated, the iter column indicates the iteration number within each chain.

subset

A numeric vector indicating the rows (i.e., posterior samples) to be returned. If NULL (the default), all posterior samples are returned.

as.matrix

Should the output be a matrix instead of a data.frame? Defaults to FALSE.

as.array

Should the output be an array instead of a data.frame? Defaults to FALSE.

...

Arguments passed to individual methods (if applicable).

See Also

as_draws, as.data.frame

Examples

Run this code
if (FALSE) {
fit <- brm(rating ~ treat + period + carry + (1|subject),
           data = inhaler, family = "cumulative")

# extract posterior samples of population-level effects
samples1 <- posterior_samples(fit, pars = "^b")
head(samples1)

# extract posterior samples of group-level standard deviations
samples2 <- posterior_samples(fit, pars = "^sd_")
head(samples2)
}

Run the code above in your browser using DataLab