Learn R Programming

brms (version 2.22.0)

psis.brmsfit: Pareto smoothed importance sampling (PSIS)

Description

Implementation of Pareto smoothed importance sampling (PSIS), a method for stabilizing importance ratios. The version of PSIS implemented here corresponds to the algorithm presented in Vehtari, Simpson, Gelman, Yao, and Gabry (2024). For PSIS diagnostics see the pareto-k-diagnostic page.

Usage

# S3 method for brmsfit
psis(log_ratios, newdata = NULL, resp = NULL, model_name = NULL, ...)

Value

The psis() methods return an object of class "psis", which is a named list with the following components:

log_weights

Vector or matrix of smoothed (and truncated) but unnormalized log weights. To get normalized weights use the weights() method provided for objects of class "psis".

diagnostics

A named list containing two vectors:

  • pareto_k: Estimates of the shape parameter \(k\) of the generalized Pareto distribution. See the pareto-k-diagnostic page for details.

  • n_eff: PSIS effective sample size estimates.

Objects of class "psis" also have the following attributes:

norm_const_log

Vector of precomputed values of colLogSumExps(log_weights) that are used internally by the weights method to normalize the log weights.

tail_len

Vector of tail lengths used for fitting the generalized Pareto distribution.

r_eff

If specified, the user's r_eff argument.

dims

Integer vector of length 2 containing S (posterior sample size) and N (number of observations).

method

Method used for importance sampling, here psis.

Arguments

log_ratios

A fitted model object of class brmsfit. Argument is named "log_ratios" to match the argument name of the loo::psis generic function.

newdata

An optional data.frame for which to evaluate predictions. If NULL (default), the original data of the model is used. NA values within factors (excluding grouping variables) are interpreted as if all dummy variables of this factor are zero. This allows, for instance, to make predictions of the grand mean when using sum coding. NA values within grouping variables are treated as a new level.

resp

Optional names of response variables. If specified, predictions are performed only for the specified response variables.

model_name

Currently ignored.

...

Further arguments passed to log_lik and loo::psis.

References

Vehtari, A., Gelman, A., and Gabry, J. (2017). Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Statistics and Computing. 27(5), 1413--1432. doi:10.1007/s11222-016-9696-4 (journal version, preprint arXiv:1507.04544).

Vehtari, A., Simpson, D., Gelman, A., Yao, Y., and Gabry, J. (2024). Pareto smoothed importance sampling. Journal of Machine Learning Research, 25(72):1-58. PDF

Examples

Run this code
if (FALSE) {
fit <- brm(rating ~ treat + period + carry, data = inhaler)
psis(fit)
}

Run the code above in your browser using DataLab