Learn R Programming

brms (version 2.9.0)

SkewNormal: The Skew-Normal Distribution

Description

Density, distribution function, and random generation for the skew-normal distribution with mean mu, standard deviation sigma, and skewness alpha.

Usage

dskew_normal(x, mu = 0, sigma = 1, alpha = 0, xi = NULL,
  omega = NULL, log = FALSE)

pskew_normal(q, mu = 0, sigma = 1, alpha = 0, xi = NULL, omega = NULL, lower.tail = TRUE, log.p = FALSE)

qskew_normal(p, mu = 0, sigma = 1, alpha = 0, xi = NULL, omega = NULL, lower.tail = TRUE, log.p = FALSE, tol = 1e-08)

rskew_normal(n, mu = 0, sigma = 1, alpha = 0, xi = NULL, omega = NULL)

Arguments

x, q

Vector of quantiles.

mu

Vector of mean values.

sigma

Vector of standard deviation values.

alpha

Vector of skewness values.

xi

Optional vector of location values. If NULL (the default), will be computed internally.

omega

Optional vector of scale values. If NULL (the default), will be computed internally.

log

Logical; If TRUE, values are returned on the log scale.

lower.tail

Logical; If TRUE (default), return P(X <= x). Else, return P(X > x) .

log.p

Logical; If TRUE, values are returned on the log scale.

p

Vector of probabilities.

tol

Tolerance of the approximation used in the computation of quantiles.

n

Number of samples to draw from the distribution.

Details

See vignette("brms_families") for details on the parameterization.