# NOT RUN {
## Random effects meta-analysis
nstudies <- 20
true_effects <- rnorm(nstudies, 0.5, 0.2)
sei <- runif(nstudies, 0.05, 0.3)
outcomes <- rnorm(nstudies, true_effects, sei)
data1 <- data.frame(outcomes, sei)
fit1 <- brm(outcomes | se(sei, sigma = TRUE) ~ 1,
data = data1)
summary(fit1)
## Probit regression using the binomial family
n <- sample(1:10, 100, TRUE) # number of trials
success <- rbinom(100, size = n, prob = 0.4)
x <- rnorm(100)
data2 <- data.frame(n, success, x)
fit2 <- brm(success | trials(n) ~ x, data = data2,
family = binomial("probit"))
summary(fit2)
## Survival regression modeling the time between the first
## and second recurrence of an infection in kidney patients.
fit3 <- brm(time | cens(censored) ~ age * sex + disease + (1|patient),
data = kidney, family = lognormal())
summary(fit3)
## Poisson model with truncated counts
fit4 <- brm(count | trunc(ub = 104) ~ zBase * Trt,
data = epilepsy, family = poisson())
summary(fit4)
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab