# NOT RUN {
if (require("xergm")) {
# Using the same simulated example as the xergm package
# Create 10 random networks with 10 actors
networks <- list()
for(i in 1:10){
mat <- matrix(rbinom(100, 1, .25), nrow = 10, ncol = 10)
diag(mat) <- 0
nw <- network::network(mat)
networks[[i]] <- nw
}
# Create 10 matrices as covariates
covariates <- list()
for (i in 1:10) {
mat <- matrix(rnorm(100), nrow = 10, ncol = 10)
covariates[[i]] <- mat
}
# Fit a model where the propensity to form ties depends
# on the edge covariates, controlling for the number of
# in-stars
btfit <- btergm(networks ~ edges + istar(2) +
edgecov(covariates), R = 100)
# Show terms, coefficient estimates and errors
tidy(btfit)
# Show coefficients as odds ratios with a 99% CI
tidy(btfit, exponentiate = TRUE, conf.level = 0.99)
}
# }
Run the code above in your browser using DataLab