Learn R Programming

broom (version 0.4.3)

robust_tidiers: Tidiers for lmRob and glmRob objects

Description

Tidying robust regression objects from the robust package. The tidy and augment methods simply pass it on to the linear model tidiers.

Usage

# S3 method for lmRob
tidy(x, ...)

# S3 method for lmRob augment(x, ...)

# S3 method for lmRob glance(x, ...)

# S3 method for glmRob tidy(x, ...)

# S3 method for glmRob augment(x, ...)

# S3 method for glmRob glance(x, ...)

Arguments

x

An lmRob or glmRob object with a robust regression

...

Extra arguments, not used

Value

All tidying methods return a data.frame without rownames, whose structure depends on the method chosen.

tidy and augment return the same results as lm_tidiers.

On an lmRob glance returns a one-row data frame with the following columns:

r.squared

R-squared

deviance

Robust deviance

sigma

Residual scale estimate

df.residual

Number of residual degrees of freedom

On an lmRob glance returns a one-row data frame with the following columns:

deviance

Robust deviance

null.deviance

Deviance under the null model

df.residual

Number of residual degrees of freedom

See Also

lm_tidiers, lmRob, glmRob

Examples

Run this code
# NOT RUN {
if (require("robust", quietly = TRUE)) {
  m <- lmRob(mpg ~ wt, data = mtcars)
  
  tidy(m)
  augment(m)
  glance(m)
  
  gm <- glmRob(am ~ wt, data = mtcars, family = "binomial")
  glance(gm)
}

# }

Run the code above in your browser using DataLab