Learn R Programming

broom (version 0.5.6)

augment.loess: Tidy a(n) loess object

Description

Tidy summarizes information about the components of a model. A model component might be a single term in a regression, a single hypothesis, a cluster, or a class. Exactly what tidy considers to be a model component varies cross models but is usually self-evident. If a model has several distinct types of components, you will need to specify which components to return.

Usage

# S3 method for loess
augment(x, data = stats::model.frame(x), newdata, ...)

Arguments

x

A loess objects returned by stats::loess().

data

A data.frame() or tibble::tibble() containing the original data that was used to produce the object x. Defaults to stats::model.frame(x) so that augment(my_fit) returns the augmented original data. Do not pass new data to the data argument. Augment will report information such as influence and cooks distance for data passed to the data argument. These measures are only defined for the original training data.

newdata

A data.frame() or tibble::tibble() containing all the original predictors used to create x. Defaults to NULL, indicating that nothing has been passed to newdata. If newdata is specified, the data argument will be ignored.

...

Arguments passed on the loess predict method.

Value

When newdata is not supplied augment.loess returns one row for each observation with three columns added to the original data:

.fitted

Fitted values of model

.se.fit

Standard errors of the fitted values

.resid

Residuals of the fitted values

When newdata is supplied augment.loess returns one row for each observation with one additional column:

.fitted

Fitted values of model

.se.fit

Standard errors of the fitted values

Details

When the modeling was performed with na.action = "na.omit" (as is the typical default), rows with NA in the initial data are omitted entirely from the augmented data frame. When the modeling was performed with na.action = "na.exclude", one should provide the original data as a second argument, at which point the augmented data will contain those rows (typically with NAs in place of the new columns). If the original data is not provided to augment() and na.action = "na.exclude", a warning is raised and the incomplete rows are dropped.

See Also

na.action

augment(), stats::loess()

Examples

Run this code
# NOT RUN {
lo <- loess(mpg ~ wt, mtcars)
augment(lo)

# with all columns of original data
augment(lo, mtcars)

# with a new dataset
augment(lo, newdata = head(mtcars))

# }

Run the code above in your browser using DataLab