Learn R Programming

broom (version 0.5.6)

tidy.cch: Tidy a(n) cch object

Description

Tidy summarizes information about the components of a model. A model component might be a single term in a regression, a single hypothesis, a cluster, or a class. Exactly what tidy considers to be a model component varies cross models but is usually self-evident. If a model has several distinct types of components, you will need to specify which components to return.

Usage

# S3 method for cch
tidy(x, conf.level = 0.95, ...)

Arguments

x

An cch object returned from survival::cch().

conf.level

confidence level for CI

...

Additional arguments. Not used. Needed to match generic signature only. Cautionary note: Misspelled arguments will be absorbed in ..., where they will be ignored. If the misspelled argument has a default value, the default value will be used. For example, if you pass conf.lvel = 0.9, all computation will proceed using conf.level = 0.95. Additionally, if you pass newdata = my_tibble to an augment() method that does not accept a newdata argument, it will use the default value for the data argument.

Value

A tibble::tibble() with one row for each term in the regression. The tibble has columns:

term

The name of the regression term.

estimate

The estimated value of the regression term.

std.error

The standard error of the regression term.

statistic

The value of a statistic, almost always a T-statistic, to use in a hypothesis that the regression term is non-zero.

p.value

The two-sided p-value associated with the observed statistic.

conf.low

The low end of a confidence interval for the regression term. Included only if conf.int = TRUE.

conf.high

The high end of a confidence interval for the regression term. Included only if conf.int = TRUE.

See Also

tidy(), survival::cch()

Other cch tidiers: glance.cch(), glance.survfit()

Other survival tidiers: augment.coxph(), augment.survreg(), glance.aareg(), glance.cch(), glance.coxph(), glance.pyears(), glance.survdiff(), glance.survexp(), glance.survfit(), glance.survreg(), tidy.aareg(), tidy.coxph(), tidy.pyears(), tidy.survdiff(), tidy.survexp(), tidy.survfit(), tidy.survreg()

Examples

Run this code
# NOT RUN {
library(survival)

# examples come from cch documentation
subcoh <- nwtco$in.subcohort
selccoh <- with(nwtco, rel==1|subcoh==1)
ccoh.data <- nwtco[selccoh,]
ccoh.data$subcohort <- subcoh[selccoh]
## central-lab histology
ccoh.data$histol <- factor(ccoh.data$histol,labels=c("FH","UH"))
## tumour stage
ccoh.data$stage <- factor(ccoh.data$stage,labels=c("I","II","III" ,"IV"))
ccoh.data$age <- ccoh.data$age/12 # Age in years

fit.ccP <- cch(Surv(edrel, rel) ~ stage + histol + age, data = ccoh.data,
               subcoh = ~subcohort, id= ~seqno, cohort.size = 4028)

tidy(fit.ccP)

# coefficient plot
library(ggplot2)
ggplot(tidy(fit.ccP), aes(x = estimate, y = term)) +
  geom_point() +
  geom_errorbarh(aes(xmin = conf.low, xmax = conf.high), height = 0) +
  geom_vline(xintercept = 0)

# }

Run the code above in your browser using DataLab