# NOT RUN {
library(mfx)
## Simulate some data
set.seed(12345)
n = 1000
x = rnorm(n)
## Beta outcome
y = rbeta(n, shape1 = plogis(1 + 0.5 * x), shape2 = (abs(0.2*x)))
## Use Smithson and Verkuilen correction
y = (y*(n-1)+0.5)/n
d = data.frame(y,x)
mod_betamfx = betamfx(y ~ x | x, data = d)
tidy(mod_betamfx, conf.int = TRUE)
## Compare with the naive model coefficients of the equivalent betareg call (not run)
# tidy(betamfx(y ~ x | x, data = d), conf.int = TRUE)
augment(mod_betamfx)
glance(mod_betamfx)
# }
Run the code above in your browser using DataLab