Tidy summarizes information about the components of a model. A model component might be a single term in a regression, a single hypothesis, a cluster, or a class. Exactly what tidy considers to be a model component varies across models but is usually self-evident. If a model has several distinct types of components, you will need to specify which components to return.
# S3 method for rma
tidy(
x,
conf.int = FALSE,
conf.level = 0.95,
exponentiate = FALSE,
include_studies = FALSE,
measure = "GEN",
...
)
An rma
object such as those created by metafor::rma()
,
metafor::rma.uni()
, metafor::rma.glmm()
, metafor::rma.mh()
,
metafor::rma.mv()
, or metafor::rma.peto()
.
Logical indicating whether or not to include a confidence
interval in the tidied output. Defaults to FALSE
.
The confidence level to use for the confidence interval
if conf.int = TRUE
. Must be strictly greater than 0 and less than 1.
Defaults to 0.95, which corresponds to a 95 percent confidence interval.
Logical indicating whether or not to exponentiate the
the coefficient estimates. This is typical for logistic and multinomial
regressions, but a bad idea if there is no log or logit link. Defaults
to FALSE
.
Logical. Should individual studies be included in the
output? Defaults to FALSE
.
Measure type. See metafor::escalc()
Additional arguments. Not used. Needed to match generic
signature only. Cautionary note: Misspelled arguments will be
absorbed in ...
, where they will be ignored. If the misspelled
argument has a default value, the default value will be used.
For example, if you pass conf.lvel = 0.9
, all computation will
proceed using conf.level = 0.95
. Additionally, if you pass
newdata = my_tibble
to an augment()
method that does not
accept a newdata
argument, it will use the default value for
the data
argument.
A tibble::tibble()
with columns:
Upper bound on the confidence interval for the estimate.
Lower bound on the confidence interval for the estimate.
The estimated value of the regression term.
The two-sided p-value associated with the observed statistic.
The value of a T-statistic to use in a hypothesis that the regression term is non-zero.
The standard error of the regression term.
The name of the individual study
The estimate type (summary vs individual study)
# NOT RUN {
library(metafor)
df <-
escalc(
measure = "RR",
ai = tpos,
bi = tneg,
ci = cpos,
di = cneg,
data = dat.bcg
)
meta_analysis <- rma(yi, vi, data = df, method = "EB")
tidy(meta_analysis)
# }
Run the code above in your browser using DataLab