Learn R Programming

broom (version 1.0.0)

tidy.cld: Tidy a(n) cld object

Description

Tidy summarizes information about the components of a model. A model component might be a single term in a regression, a single hypothesis, a cluster, or a class. Exactly what tidy considers to be a model component varies across models but is usually self-evident. If a model has several distinct types of components, you will need to specify which components to return.

Usage

# S3 method for cld
tidy(x, ...)

Value

A tibble::tibble() with columns:

contrast

Levels being compared.

letters

Compact letter display denoting all pair-wise comparisons.

Arguments

x

A cld object created by calling multcomp::cld() on a glht, confint.glht() or summary.glht() object.

...

Additional arguments. Not used. Needed to match generic signature only. Cautionary note: Misspelled arguments will be absorbed in ..., where they will be ignored. If the misspelled argument has a default value, the default value will be used. For example, if you pass conf.lvel = 0.9, all computation will proceed using conf.level = 0.95. Two exceptions here are:

  • tidy() methods will warn when supplied an exponentiate argument if it will be ignored.

  • augment() methods will warn when supplied a newdata argument if it will be ignored.

See Also

tidy(), multcomp::cld(), multcomp::summary.glht(), multcomp::confint.glht(), multcomp::glht()

Other multcomp tidiers: tidy.confint.glht(), tidy.glht(), tidy.summary.glht()

Examples

Run this code
if (FALSE) { # rlang::is_installed("multcomp")

# load libraries for models and data
library(multcomp)
library(ggplot2)

amod <- aov(breaks ~ wool + tension, data = warpbreaks)
wht <- glht(amod, linfct = mcp(tension = "Tukey"))

tidy(wht)

ggplot(wht, aes(lhs, estimate)) +
  geom_point()

CI <- confint(wht)

tidy(CI)

ggplot(CI, aes(lhs, estimate, ymin = lwr, ymax = upr)) +
  geom_pointrange()

tidy(summary(wht))
ggplot(mapping = aes(lhs, estimate)) +
  geom_linerange(aes(ymin = lwr, ymax = upr), data = CI) +
  geom_point(aes(size = p), data = summary(wht)) +
  scale_size(trans = "reverse")

cld <- cld(wht)
tidy(cld)
}

Run the code above in your browser using DataLab