Learn R Programming

broom (version 1.0.4)

tidy.zoo: Tidy a(n) zoo object

Description

Tidy summarizes information about the components of a model. A model component might be a single term in a regression, a single hypothesis, a cluster, or a class. Exactly what tidy considers to be a model component varies across models but is usually self-evident. If a model has several distinct types of components, you will need to specify which components to return.

Usage

# S3 method for zoo
tidy(x, ...)

Value

A tibble::tibble() with columns:

index

Index (i.e. date or time) for a `ts` or `zoo` object.

series

Name of the series (present only for multivariate time series).

value

The value/estimate of the component. Results from data reshaping.

Arguments

x

A zoo object such as those created by zoo::zoo().

...

Additional arguments. Not used. Needed to match generic signature only. Cautionary note: Misspelled arguments will be absorbed in ..., where they will be ignored. If the misspelled argument has a default value, the default value will be used. For example, if you pass conf.lvel = 0.9, all computation will proceed using conf.level = 0.95. Two exceptions here are:

  • tidy() methods will warn when supplied an exponentiate argument if it will be ignored.

  • augment() methods will warn when supplied a newdata argument if it will be ignored.

See Also

tidy(), zoo::zoo()

Other time series tidiers: tidy.acf(), tidy.spec(), tidy.ts()

Examples

Run this code

# load libraries for models and data
library(zoo)
library(ggplot2)

set.seed(1071)

# generate data
Z.index <- as.Date(sample(12450:12500, 10))
Z.data <- matrix(rnorm(30), ncol = 3)
colnames(Z.data) <- c("Aa", "Bb", "Cc")
Z <- zoo(Z.data, Z.index)

# summarize model fit with tidiers + visualization
tidy(Z)

ggplot(tidy(Z), aes(index, value, color = series)) +
  geom_line()

ggplot(tidy(Z), aes(index, value)) +
  geom_line() +
  facet_wrap(~series, ncol = 1)

Zrolled <- rollmean(Z, 5)
ggplot(tidy(Zrolled), aes(index, value, color = series)) +
  geom_line()
  

Run the code above in your browser using DataLab