# NOT RUN {
#### NOTE ####
## In the following examples, I set nsim=100 to save time.
## In formal analyses, nsim=1000 (or larger) is suggested!
#### Demo Data ####
# ?mediation::student
data=mediation::student %>%
dplyr::select(SCH_ID, free, smorale, pared, income,
gender, work, attachment, fight, late, score)
names(data)[2:3]=c("SCH_free", "SCH_morale")
names(data)[4:7]=c("parent_edu", "family_inc", "gender", "partjob")
data$gender01=1-data$gender # 0 = female, 1 = male
# dichotomous X: as.factor()
data$gender=factor(data$gender01, levels=0:1, labels=c("Female", "Male"))
# dichotomous Y: as.factor()
data$pass=as.factor(ifelse(data$score>=50, 1, 0))
#### Descriptive Statistics and Correlation Analyses ####
Freq(data$gender)
Freq(data$pass)
Describe(data) # file="xxx.doc"
Corr(data[,4:11]) # file="xxx.doc"
#### PROCESS Analyses ####
## Model 1 ##
PROCESS(data, y="score", x="late", mods="gender") # continuous Y
PROCESS(data, y="pass", x="late", mods="gender") # dichotomous Y
# (multilevel moderation)
PROCESS(data, y="score", x="late", mods="gender", # continuous Y (LMM)
clusters="SCH_ID")
PROCESS(data, y="pass", x="late", mods="gender", # dichotomous Y (GLMM)
clusters="SCH_ID")
# (Johnson-Neyman (J-N) interval and plot)
PROCESS(data, y="score", x="gender", mods="late")->P
P$results[[1]]$jn[[1]] # Johnson-Neyman interval
P$results[[1]]$jn[[1]]$plot # Johnson-Neyman plot (ggplot object)
GLM_summary(P$model.y) # detailed results of regression
# (allows multicategorical moderator)
d=airquality
d$Month=as.factor(d$Month) # moderator: factor with levels "5"~"9"
PROCESS(d, y="Temp", x="Solar.R", mods="Month")
## Model 2 ##
PROCESS(data, y="score", x="late",
mods=c("gender", "family_inc"),
mod.type="2-way") # or omit "mod.type", default is "2-way"
## Model 3 ##
PROCESS(data, y="score", x="late",
mods=c("gender", "family_inc"),
mod.type="3-way")
PROCESS(data, y="pass", x="gender",
mods=c("late", "family_inc"),
mod1.val=c(1, 3, 5), # moderator 1: late
mod2.val=seq(1, 15, 2), # moderator 2: family_inc
mod.type="3-way")
## Model 4 ##
PROCESS(data, y="score", x="parent_edu",
meds="family_inc", covs="gender",
ci="boot", nsim=100, seed=1)
# (allows an infinite number of multiple mediators in parallel)
PROCESS(data, y="score", x="parent_edu",
meds=c("family_inc", "late"),
covs=c("gender", "partjob"),
ci="boot", nsim=100, seed=1)
# (multilevel mediation)
PROCESS(data, y="score", x="SCH_free",
meds="late", clusters="SCH_ID",
ci="mcmc", nsim=100, seed=1)
## Model 6 ##
PROCESS(data, y="score", x="parent_edu",
meds=c("family_inc", "late"),
covs=c("gender", "partjob"),
med.type="serial",
ci="boot", nsim=100, seed=1)
## Model 8 ##
PROCESS(data, y="score", x="fight",
meds="late",
mods="gender",
mod.path=c("x-m", "x-y"),
ci="boot", nsim=100, seed=1)
## For more examples and details, see the "note" subfolder at:
## https://github.com/psychbruce/bruceR
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab